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Abstract

Triangular meshes of high complexity are common when created by a 3D scanner device and must be reduced for
further processing. The geodesic Poisson disk remeshing [FZ08] is a method that generates a simplified mesh with
highly regular triangles at the cost of exorbitant computation time. In this paper we will outline a new approach to
this technique that makes it applicable for highly complex models. Our approach operates directly on the surface
of the mesh, therefore works for meshes of arbitrary topology. Meshes consisting of millions of triangles can
be reduced to an arbitrary complexity in just a few minutes while the original approach processes meshes with
thousands of triangles in the same time. Our easy to implement remeshing technique also provides several options
to preserve features.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Today’s industry and research departments use 3D models
for the development of new products, physical simulations,
the creation of virtual worlds and various other applications.
Each of these branches has individual requirements towards
the models. While software that draws objects requires them
to have few elements in order to render many objects in real-
time, physical simulations demand meshes that consist of
regular triangles to guarantee the stability of the applied al-
gorithms. Remeshing techniques are used to fit certain prop-
erties of a mesh to the specific purpose.

The focus of our remeshing technique is on the simplifi-
cation of meshes with high triangle count. This is especially
important for meshes that are generated from 3D scanner
data.

2. Previous Work

A lot of research has already been done in the field of
remeshing. Due to the length restrictions we refer the
reader to comprehensive state-of-the-art papers. Alliez et
al. [AUGA08] described, categorized, and summarized tech-
niques developed prior to 2008. By their categorization
scheme our technique is a high quality one with elements
of feature remeshing. We also work directly on the mesh
and therefore do not need a global parametrization. Another

survey was done recently by Payan et al. [PRS14] which
focused on semi-regular meshing. In contrast to these tech-
niques we do not build a base mesh nor use a parametriza-
tion.

One particular algorithm that has mainly inspired our
technique is the direct geodesic Poisson disk sampling al-
gorithm [FZ08] by Fu and Zhou. Their technique generates
meshes with highly regular triangles, but their algorithm is
computationally expensive. While we adopted the general
idea from their technique, we use a completely different
computation scheme, hence sacrificing a little on the quality
side but are able to process meshes with millions of triangles
in short time.

3. Fast Edge-based geodesic Poisson Disk Remeshing

The basic idea of the algorithm is to distribute a number of
sampling vertices isotropically over the surface of the orig-
inal mesh. To create this isotropic distribution, a geodesic
disk of constant radius is assigned to each sampling vertex.
New sampling vertices can be created on the border of the
set union of disks only, guaranteeing a minimal spacing be-
tween all sampling vertices. Edge splits are used during the
sampling phase to merge each new sampling vertex with the
original mesh. The final mesh is obtained by removing all
original vertices from the mutually tessellated mesh. There-
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Figure 1: Two steps of our sampling algorithm. The left
side shows the first sampling vertex v1 and its associated
geodesic disk of radius r colored in red. The blue crosses
indicate the intersection points of the disk with the edges of
the mesh. These are the possible positions for the next sam-
pling vertex. On the right side: The sampling algorithm after
the 5 sampling vertices v2 through v6 have been added. The
red line is the border of the set union of geodesic disks of
all 6 sampling vertices. Note that this is only an illustration,
our technique does not compute the whole border. The blue
crosses are again the possible position for the next sampling
vertex. The blue edges have been added by the edge split
operations.

fore we follow the concept in [FZ08]. A vertex removal op-
eration is applied on each original vertex and the resulting
hole is patched by a local parametrization and Delaunay tri-
angulation.

The input of our algorithm is the triangle mesh M and
the vertex count ϑ the final mesh should have. The following
steps are performed:

1. Determine disk radius r with ϑ and surface area AM us-
ing equation (1)

2. Select a random start vertex v and assign geodesic dis-
tance 0

3. Compute all geodesic distances up to distance r and insert
border edges into cache C

4. if C = ∅ Exit
5. Select an edge from C and calculate the new sampling

vertex position
6. Create a new sampling vertex and fuse it into the mesh

by applying an edge split operation
7. Assign geodesic distance 0 to new sampling point
8. Continue with step 3

Lagae and Dutré [LD06] described the relation of the disk ra-
dius and the number of samples on the unit square. Tailored
to our algorithm the disk radius for a mesh with surface area
AM can be calculated using the equation:

r = 2 ·
√

AM ·

√
1

2 ·
√

3 ·ϑ
·0.844. (1)

The constant value of 0.844 is an algorithm specific con-
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Figure 2: Construction of the triangle to find the next sam-
pling vertex. p0 is the origin of the local coordinate system
and the red partial circle is the border of the geodesic disk
intersecting the border edge. v0 is the closest sampling ver-
tex to the border edge (v1,v2).

stant established in [FZ08] and works for our implementa-
tion as well.

The algorithm successively adds new sampling vertices
and includes them into the mesh by the edge split operation.
Each sampling vertex has an associated disk and the possible
sampling vertex positions in each step are the points, where
the border of the set union of disks intersects the edges of
the mesh. To find these border edges (v1,v2) efficiently the
condition

dg(v1)≤ r & dg(v2)≥ r, (2)

where dg(v) is the geodesic distance of a vertex v, is evalu-
ated during the calculation of the geodesic distances for each
processed edge. If this condition is met, a point exists on the
edge where the border of the set union of disks intersects
this edge. Once a border edge has been found, it is stored
in the cache. We do not need to compute the exact border
using this technique, hence saving a considerable amount of
calculations.

This is the major difference to the technique of Fu and
Zhou [FZ08]. They compute the geodesic disk explicitly by
computing the equidistant geodesic curve of radius r for each
sampling vertex. They have to merge the equidistant curve of
the new sampling vertex with the old border in each step to
obtain the current border. Our approach is faster to compute
and much easier to implement.

To obtain the actual position of the next sampling vertex
vs we construct a triangle (p0, p1, p2) with p0, p1, p2 ∈ R2

from the border edge (v1,v2) as illustrated in figure 2. Then
we solve the equation:

‖p1 + t · (p2− p1)‖= r. (3)

Once the quadratic equation is solved, the valid solution t
is used as interpolation parameter on the corresponding bor-
der edge (v1,v2) to obtain vs.

After the sampling phase is finished the mesh consists of
the original vertices, the new sampling vertices, and their
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Feature detection Full & adaptive sampling

Figure 3: Recognized features (left image) can be preserved
entirely (top slice) or up to a specific amount (bottom slice).

corresponding mesh elements. We remove the original ver-
tices by successively applying vertex removal operations on
them. The resulting hole is locally parametrized and closed
using constrained Delaunay triangulation [FZ08]. Finally we
apply post processing steps to enhance the quality of the tri-
angles further. Namely we apply a user defined amount of
edge flips and second order umbrella operator [KCVS98] it-
erations. This increases the regularity of the triangles while
introducing only a small additional approximation error, as
long as the iteration count is kept low.

3.1. Preserving Features

The preservation of features, such as sharp or smooth edges,
is essential for the appearance of an object. To preserve the
features we adapted the basic concepts from [FZ08] but im-
plemented them in a different way, so that they work with our
approach. There are two options for feature preservation that
we have elaborated. The first one is an additional sampling
of the feature regions, that we will refer to as the manual fea-
ture preservation, because the feature regions are user inputs.
The second option is a density function. This method will be
referred to as the automatic feature preservation. To recog-
nize features we use the uniformly supported second-order
difference [Wan06] with user determined threshold values.

3.1.1. Manual Feature Preservation

To preserve determined features it is possible to keep all fea-
ture vertices in the region as sampling vertices. This can,
however, result in a completely different tessellation within
this region in comparison to the rest of the mesh. Therefore
we do a presampling of the feature region with the described
sampling, but we scale the disk according to a specific pa-
rameter. This way additional vertices are created in the fea-
ture region but the tessellation fits more adequately into the
new mesh. Figure 3 shows an example result of the manual
feature preservation.

3.1.2. Automatic Feature Preservation

To preserve features automatically during the sampling we
use the density function:

dgs(v) = dg(v) · (1+λ ·H). (4)

Figure 4: Additional mesh elements are created in regions
with high curvature due to the automatic feature preserva-
tion.

It expands the geodesic distances according to the mean
curvature H of the respective vertex and a scaling factor λ.
Note that stretching geodesic distances is equivalent to lo-
cally contracting the radius of the disk. The larger λ is cho-
sen, the stronger the curvature will affect the density of the
created samples. More samples are placed in regions with
high curvature this way, resulting in an improved feature
preservation within these areas. The impact of the automatic
feature preservation is illustrated in figure 4.

The density function also affects the computation of r. If
the formula is not adapted, more vertices than specified by
ϑ are created. We determine the average mean curvature of
the surface and weave it into the formula for computing r to
compensate for the stretching of the distances. The updated
equation for calculating r is:

r = 2 ·
√

AM ·

√
1

2 ·
√

3 ·ϑ
·0.844 ·

(
1+
|V |

∑
i=i

λ ·H(vi)

|V |

)
. (5)

4. Results and Discussion

We tested our technique with a variety of models on a PC
with an Intel Xeon X5 at 3.60 GHz CPU and 32GB of RAM.
We reduced each model by 90% of its complexity and com-
pared our technique to the simplification algorithm of Mesh-
Lab [CR∗ay]. Table 1 lists the results. The computation time
for our algorithm depends mainly on the size of the input
model. The size of the output model has barely an effect. In
comparison to MeshLab’s Quadric Edge Collapse decima-
tion algorithm we are slightly slower and can not compete
in terms of approximation error, but our technique produces
triangles with significantly higher quality. Our current im-
plementation is single threaded. We believe that a parallel
version would outperform MeshLabs algorithm.

In comparison to the results listed by the authors of the
original Poisson disk remeshing, we can process a mesh with
8 million faces in the same time they process one with 8
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Model ‖Fo‖/‖Fr‖ Times ERMS AR(Ø)
Angel 614k/60k 9.46 0.0890 0.824

6.15 0.0184 0.656
Face 2.63M/243k 39.17 0.0652 0.835

25.59 0.0133 0.659
Gargoyle 7.95M/787k 124.58 0.0098 0.828

83.27 0.0021 0.685

Table 1: Results of simplified meshes created with our tech-
nique and by Quadric Edge Collapse. This table lists, in or-
der from left to right, the models name, the face count of the
original mesh and the simplified one, the processing time
in seconds, the RMS approximation error measured by the
Metro tool [CRS96], and the average aspect ratio [JCLL10]
of the triangles. The top row shows our algorithms results
and the bottom row MeshLabs results for each model, re-
spectively.

thousand, yet their aspect ratio is approximately 0.1 higher
than ours in average.

We encountered problems with our technique when cre-
ating meshes of equal or higher complexity than the input
mesh. New samples cannot be created inside the triangles
because of the edge based approach. We worked around this
problem by applying edge splits on the mesh until a suffi-
cient complexity has been achieved. In general we found that
the input mesh should have double the number of vertices
of the output mesh to get good results. A similar problem
arises in regions with high grading. If a mesh contains stray
triangles that are much larger in size then the others, these
triangles may not be remeshed appropriately.

5. Conclusion and Future Work

We proposed a new approach to the geodesic Poisson disk
sampling method for direct remeshing of triangulated sur-
faces. Our approach approximates calculations through the
use of the existing edges resulting in a very fast algorithm.

The strong side of our algorithm is especially the down-
sizing of large scale models. While the processing speed is
very high, the introduced approximation error is still low. In
comparison with specialized simplification algorithms, our
approach achieves results of considerably higher regular-
ity. The outlined feature preservation methods support user-
specified as well as automated preservation of features.

For future work we like to verify how recent approaches to
the computation of geodesic distances fit into our technique
and may help to improve the quality and accuracy of the
resulting mesh. The geodesics in heat [CWW13] by Crane
et al. and the saddle vertex graph technique [YWH13] by
Ying et al. seem to be promising approaches. Another pos-
sible improvement could be a sophisticated placement spot
for the next sampling vertex, because the random selection

Figure 5: Gargoyle original and remeshed version created
with our technique.

does not lead to optimal results. Using the intersection point
of two disks would improve the isotropy due to the optimal
utilization of the available space. It must, however, first be
determined how this point can be found efficiently.
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