EUROGRAPHICS 2014 / E. Galin and M. Wand

Short Paper

Deferred Shading for Order-Independent Transparency

K. E. Hillesland, B. Bilodeau and N. Thibieroz

Advanced Micro Devices, Inc.

(a) Deferred OIT. 2.8 ms (b) Low-cost Shading. 2.6 ms (c) Forward OIT. 4.9 ms

Figure 1: By deferring transparent fragment shading (a) we can identify fragments that do not influence the final pixel color
significantly after blending and apply lower cost shading (b), giving us something very close to full shading of all fragments (c)

but at much lower cost.

Abstract

Rendering many layers of transparency presents difficult challenges with respect to performance. Most previous
work focused on the sorting problem, paying the full shading cost for all fragments. We present a method that
defers shading until fragments can be classified as less important to the final pixel color, allowing us to switch
to a lower-cost, approximate shading function. We apply this idea to TressEX, which is a state-of-the-art hair
rendering technique used in video game production. For hair rendering, we switched to low-quality shading in all
but the front eight fragments per pixel. This gave us a 75% speedup without noticeable loss in visual quality.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Shading, shadowing, visible line/surface algorithms

1. Introduction

Transparent objects are often difficult to render efficiently
due to depth complexity. Hair and smoke, for example, can
require blending tens to hundreds of layers. In the case of
opaque objects, techniques such as occlusion culling and
deferred shading are available to reduce shading cost. How-
ever, they rely on the fact that opaque objects completely ob-
scure what is behind them. Because transparent objects, by
definition, do not have this property, developers instead try
to manage the cost of transparent-object shading by keeping
the shading simple or rendering at lower resolution.

(© The Eurographics Association 2014.

DOI: 10.2312/egsh.20141012

There has been some recent work in reducing the cost of
sorting transparent objects, which is sometimes a significant
cost when employing the standard blending functions. When
the depth complexity is quite large, heuristics are often em-
ployed to identify which fragments are most important for
the sake of saving sort cost, but all fragments incur the full
cost of shading. Our work differs from previous work in that
we tackle the shading cost issue. In fact, we adopt one of
these previous approaches for saving sort cost, and improve
performance further by substantially reducing shader cost.
To achieve this, we need to defer shading of a fragment un-

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org



http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egsh.20141012

50 K. Hillesland & B. Bilodeau & N. Thibieroz / Deferred Shading for Order-Independent Transparency

til it can be classified as important or not. For those frag-
ments identified as unimportant, we can save shading cost
by switching to a lower-cost shading function.

2. Previous Work

Deferred shading stores shader inputs instead of color while
rasterizing geometry, deferring the shading until the visible
fragments have been identified. It leverages the assumption
that only one fragment will be visible for each pixel sample;
therefore, no more than one fragment need be shaded. This
assumption is not true for transparent objects, so they are
generally handled using a special forward pass in deferred
renderers.

Achieving properly ordered blending requires sorting
fragments by depth. One approach is to store all the frag-
ments, and then sort and blend them. This can be accom-
plished in real time on modern graphics hardware by storing
the fragments in per-pixel linked lists using atomic exchange
and increment [YHGT10]. However, this method becomes
prohibitive when depth complexity is in the hundreds.

A number of approaches have approximated full fragment
sorting and blending, but the two closest to this work are a
k-buffer implementation [YYH*12], which was simplified
for TressFX [LaC13], and Hybrid Transparency [MCTB13].
They classify the k fragments closest to the eye in each pixel
as the most important for sorting and blending. We do the
same for sorting and blending, but also apply the heuristic
for choosing where to apply shading cost.

We are effectively using shader level of detail to save
shading cost. The main difference with previous work for
shader level of detail is that we use it for fragments that
contribute little to final pixel color in the context of trans-
parency, rather than for low end hardware, or real-time con-
straints [OKS03, Pel05].

3. Method

Because of the nature of blending, some fragments in a pixel
will contribute more to the final pixel color than others. We
shade important fragments at high quality, and therefore high
cost, and unimportant fragments using a lower-cost function.

We adapted the two-pass method of Yu et al. [YYH*12].
This is also the approach of TressFX, which has been used
successfully in a game production environment [LaC13].
They classify the closest k fragments as being more impor-
tant than the rest for sorting purposes. We refer to the front
fragments as the core and the rest as the rail, adopting the
terminology from Maule et al [MCTB13].

In TressFX, a geometry pass shades and collects frag-
ments in per-pixel linked lists [YHGT10]. A second screen-
space pass collects the front k£ fragments per-pixel in shader
registers while blending tail fragments out of order. Once

the front k elements have been collected, they are sorted and
blended in order. This method requires only one pass over
the scene geometry. In the next section, we will describe how
this is applied to the specific case of hair rendering, in which
a single geometry pass is important for performance.

Our method differs in that we defer shading to the second
pass. As each fragment is identified as being part of the tail,
we apply lower-cost shading, saving the higher-cost shading
for the core. To defer the shading, we must store the shad-
ing inputs rather than final color in the linked lists. This can
mean additional memory in a lot of cases, just as G-buffers
tend to take more memory than final color in standard de-
ferred rendering. In exchange, we get savings on shader cost,
and the tradeoff of a deferred approach becomes more attrac-
tive as shading cost goes up. For the remainder of this paper,
we refer to previous approaches as forward and to ours as
deferred.

3.1. An Implementation for Hair

We apply this principle to the case of hair rendering, specif-
ically the method used in TressFX [LaC13], including their
approach to shading, shadowing and anti-aliasing. Our mod-
ification is to apply cheaper shading and shadowing to frag-
ments in the tail. We chose to use the same k fragments for
both sorted blending and high-quality shading, although this
need not be the case. The model and viewpoint we used for
analysis is shown in Figure 1.

We attenuate light according to how deep the hair frag-
ment is in the hair volume relative to the light using a shadow
map. Rather than classifying a fragment as in shadow when
it is closer than the shadow map depth, we attenuate it ac-
cording to the difference in depth using the following func-
tion.

n
Sw= Y wlai, i) (1 = o)) (1)
i=1

where o is the transparency of the hair, d is the difference in
depth between the hair fragment and the shadow map depth
sampled at offset (x;,y;) and w is a Gaussian weight based
on distance from the center of the kernel. Quality is con-
trolled by the choice of n, which for our tests was 1 for lower
cost shading in the tail and 25 for higher cost shading in the
core. The high value reduces aliasing caused by the high-
frequency nature of the hair geometry.

For shading, we use one of two functions, again dependent
on the quality choice. For the first, we use a modified Kajiya-
Kay function [Sch04].

R =(1—Sn)(Rg+Rgr+RrRT) 2

The reflection factor R is computed from the shadow factor
(Sn of Equation 1), a diffuse reflectance term (R;) and two
shifted specular terms (Rg and (Rrgr) as predicted by the
Marschner model [MJC*03]. The diffuse term is the same as

(© The Eurographics Association 2014.



K. Hillesland & B. Bilodeau & N. Thibieroz / Deferred Shading for Order-Independent Transparency 51

Kajiya-Kay, and the two specular terms are shifted Kajiya-
Kay specular terms.

For the tail fragments, we use only the diffuse term (R;)
with a single shadow tap (Equation 1 specialized for n = 1).

We also compute coverage analytically similarly to Yu,
et al. [YYH™12] and factor this into the transparency term.
Computing coverage in the first pass allows us to eliminate
fragments with alpha less than 1/255.

In general, the memory required to store shader inputs is
greater than the memory required to store color; however,
it is the same in this implementation. Both forward and de-
ferred versions require storage of depth, and for a linked-list
implementation, a next pointer. The forward version also re-
quires storage of color plus alpha. At one byte per compo-
nent, this is four bytes for color plus alpha. For the deferred
version, we instead use those same four bytes to store the
hair tangent (three bytes) and alpha (one byte), again for a
total of four bytes.

3.2. Analysis Methodology

We evaluate performance and error relative to the forward
version used in TressFX, which draws all fragments at high
quality. We also look at two other variants.

In the first, we draw all layers with low-cost shading. This
establishes a lower bound on quality and shader cost as k is
reduced (to £ = 0). We do not reduce k for sorting.

In the second, which we call tailless, we draw only the
front k layers. We still need to process the entire list of frag-
ments to find the front k, and we also still accumulate opacity
of the tail fragments so the background is blended as if all
the layers are there. This is the lowest bound on tail-shader
cost, which is none at all.

We primarily analyze performance and quality for k = 8
because we found this to be a good choice in terms of trade-
off between quality and performance when considering the
forward-rendering method. Also, it is the value used in pub-
licly released game implementations [LaC13]. We analyze a
single representative viewpoint for consistency. Timings are
GPU time for each pass on an AMD Radeon HD 7970.

As we zoom in so that hair pixels cover more of the
screen, the total load goes up, but the average depth com-
plexity goes down. To analyze this effect, we vary the field of
view. Total hair pixel coverage is 35k, 78k, 198k, and 365k
for the four fields-of-view analyzed at 1920 x 1200. We refer
to these views by their pixel coverage. We use the 198k case
as the primary case (i.e., when we list only a single value).

For error, we use the root-mean-square error (RMSE) in
linear color space, considering only hair pixels and weight-
ing all channels equally. Measurements were taken for the
198k pixel view. These values are measured using 8 bits per-
channel outputs, meaning they are in the range of 0 to 255

(© The Eurographics Association 2014.

for each channel, or v/3 x 2554 /2 442 is the upper bound on
the RMSE.

4. Results

Because our method is designed to address performance in
cases of transparency with high depth complexity, we begin
with an analysis of the depth complexity for our test scene.
Figure 2 shows the number of fragments per pixel for the
case of 198k pixels with an average overdraw of about 20x.
Other choices for field of view that we analyze cause this to
vary from 18x to 30x, with 30x corresponding to the lowest
pixel count.

Pixel Count

0 50 100 150
Fragment Count Per Pixel

—35k —78k 198k —365k

(a) Visualizing frag-
ments per pixel.

(b) Fragment histogram.

Figure 2: Fragments per pixel. (a) visualizes the case for
198k hair pixels, with grey = 1, blue = 8, green = 50, and
red = 100 and above. (b) shows a histogram for the different
zoom levels.

The deferred approach, with lower-quality shadowing and
shading in the tail, introduces some error relative to the for-
ward approach. At k = 8, the RMSE is 9. There are no no-
ticeable artifacts relative to the forward approach, and it is
difficult to distinguish between the two without being able
to toggle directly between them. The tailless alternative re-
sults in an RMSE of 26 at k = 8. This tends to exacerbate
sampling issues, introducing some objectionable noise. Fi-
nally, applying low-cost shading to all fragments results in
90 RMSE, mainly due to the lack of specular highlights
and our failure to normalize to account for that loss, but the
single-tap shadow filter also introduces a fair amount of arti-
facts. The point, however, is that even a poor low-cost shader
in the tail gives us visual improvement.

Two figures illustrate performance characteristics. Fig-
ure 3 breaks down time for the forward and deferred ap-
proaches at various resolutions to illustrate how shading time
is shifted from the first pass in the forward version to the sec-
ond pass in the deferred version. We also included the tail-
less version to see the maximum available performance for
the choice of the low-cost shading function.

Figure 4 shows the incremental cost of the tail fragments
for the forward and deferred versions. The purpose of Fig-
ure 4 is to illustrate that the deferred approach gives an in-



52 K. Hillesland & B. Bilodeau & N. Thibieroz / Deferred Shading for Order-Independent Transparency

o

- 140%
121%

~

111% A20%%

108% 107%

g

o

- 100%

@

_ o
5 3
£ 74% | s0% §
g4 &
E H
=] - 60% 8
& o
&3 s 3
2.1 40%
2 o8] 26%
1 13 &4 0o I 20%
06 . 14
08
05
o MENom N oS - o%

35k 78k 198k 365k

Hair Pixel Count
Deferred Pass 2
Tailless Speedup

mm Deferred Pass 1
=¢=Deferred Speedup

mm Forward Pass 1 Forward Pass 2

Tailless Pass 1 Tailless Pass 2

Figure 3: Comparison of forward and deferred performance
at four different resolutions. These numbers are for the k = 8
case.

crease in fidelity for much lower cost and better performance
scaling than the forward version.

35
~=-Forward —-Deferred
3 27

0.66 0.55 0.59 0.67

[t
«

Tail Cost (ms)
N
RN
.
\\

=4
@

o

35k 78k 198k 365k
Hair Pixel Count

Figure 4: Additional cost of shading the tail.

Any additional cost of deferring the shading must be off-
set by the savings in switching to lower-cost shading in the
tail. In this particular case, there is no increase in mem-
ory cost for storing tangents rather than colors in the linked
list. In exchange, we were able to save both compute cost
and memory bandwidth due to fewer shadow-map texture
fetches.

Our method’s speedup is limited by how much we can
reduce shading cost in the tail. Reducing tail-shading cost to
zero gives us the tailless case in Figure 3. This gives us an
upper bound on speedup without changing k.

Our method’s speedup is also limited by how much we
can reduce k for shading. This, in turn, depends on the qual-
ity of the low-cost shading choice. The low-cost shading we
chose shows noticeable quality loss at k£ = 4. However, re-
ducing k from eight to zero only drops GPU time from 2.8
ms to 2.6 ms for the 198k case.

It should also be noted that although our method shows

greater speedup as the relative load of fragment shading in-
creases, it also starts to decrease at higher resolutions as the
fraction of fragments in the tail decreases. This is indicated
by the slight drop in the deferred speedup curve for the 365k
case (Figure 3).

5. Conclusions and Future Work

Applying high-quality shading to the front fragments of each
pixel while using a lower-cost shading for the rest provides a
good trade-off between quality and performance. The shad-
ing cost is spent on the fragments that matter the most to
the final image. For hair rendering, we achieved up to 75%
speed-up over the forward version (Figure 3) while main-
taining high-quality shading results.

For the future, we are interested in exploring other k-
buffer implementations, as well as other transparency ap-
proximations such as Adaptive Transparency [SML11]. We
would also like to look at other applications that exhibit high
levels of transparent depth complexity, such as particles or
atmospherics.

References

[LaC13] LACROIX J.: A Survivor Reborn: Tomb Raider on
DX11. Game Developer Conference Advanced Visual Effecs
with DirectX 11 Course Notes, March 2013. 2, 3

[MCTB13] MAULE M., COMBA J. A., TORCHELSEN R., BAS-
TOS R.: Hybrid Transparency. In Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games
(2013), 13D *13, pp. 103-118. 2

[MJC*03] MARSCHNER S. R., JENSEN H. W., CAMMARANO
M., WORLEY S., HANRAHAN P.: Light scattering from human
hair fibers. ACM Transactions on Graphics 22 (2003), 780-791.
2

[OKS03] OLANO M., KUEHNE B., SIMMONS M.: Auto-
matic shader level of detail. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware
(2003), HWWS °03, pp. 7-14. 2

[Pel0S] PELLACINI F.: User-configurable automatic shader sim-
plification. ACM Trans. Graph. 24, 3 (July 2005), 445-452. 2

[Sch04] SCHEUERMANN T.: Practical real-time hair rendering
and shading. In ACM SIGGRAPH 2004 Sketches (2004), SIG-
GRAPH °04, p. 147. 2

[SML11] SALVI M., MONTGOMERY J., LEFOHN A.: Adaptive
Transparency. In Proceedings of the ACM SIGGRAPH Sympo-
sium on High Performance Graphics (2011), HPG "11, pp. 119-
126. 4

[YHGT10] YANG]J.C., HENSLEY J., GRUN H., THIBIEROZ N.:
Real-time concurrent linked list construction on the GPU. In
Proceedings of the 21st Eurographics conference on Rendering
(2010), EGSR’10, pp. 1297-1304. 2

[YYH*12] YU X., YANG J. C., HENSLEY J., HARADA T., YU
J.: A framework for rendering complex scattering effects on hair.
In Proceedings of the ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics and Games (2012), 13D *12, pp. 111-118. 2,
3

(© The Eurographics Association 2014.



