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Figure 1: a) Original image; b) Small rocks outer edges; c) Equatorial slices; d) Equatorial slices superimposed to the original
image; e) Three-dimensional reconstruction

Abstract
Surfaces covered with pebbles and small rocks can often be found in nature or in human-shaped environments.
Generating an accurate three-dimensional model of these kind of surfaces from a reference image can be chal-
lenging, especially if one wants to be able to animate each pebble individually. To undertake this kind of task
manually is time consuming and impossible to achieve in dynamic terrains animations.
The method described in this paper allows unsupervised automatic generation of three-dimensional textured rocks
from a two-dimensional image aiming to closely match the original image as much as possible.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Procedural generation of rocks has been addressed in the
literature by Peytavie, Galin et al. [PGGM09a, PGGM09b]
which describe a method to aperiodically tile surfaces with
rocks; on the same line of work Sakurai and Miyata [SM10]
use Voronoi cells to generate and pile different kinds of
rocks, while Dart, de Rossi and Togelius [DDT11] use three-
dimensional L-systems to procedurally generate rocks.

Although these approaches are very effective in produc-
ing random or regular distributions of rocks, none of them
use an image to guide the generation of the scene.
In contrast, Kita and Miyata [KM11] use a reference im-
age, but only to describe the general shape of the mosaic
in their pebbles mosaic generator and not to describe each
rock shape and texture. Liu and Xing [LX13] model a rock
starting from an image of its material interfaces. However,
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they focus on reproducing a single rock with an high level of
detail.

In this article, the focus is on reproducing a large num-
ber of small rocks that have appearance, position and shape
defined by a given two-dimensional image.

Reconstructing a three-dimensional model of an object
from a single two-dimensional image is challenging due to
the lack of information along one of the spatial axis. In lit-
erature the problem has been often studied for architectural
purposes [DT96, vdH98, SM99, JTC09], or allowing a user
to guide the process [LH00, CZS∗13].
The reader may refer to Bolle and Vemuri [BV91] for a sur-
vey of mathematical methods for three-dimensional surface
reconstruction and to Remondino and El-Hakim [REH06]
for a more recent review on techniques and problems on im-
age based three-dimensional modeling.

In this paper, generalized ellipsoids are introduced as a
way to generate organic small rock meshes, section 2. More-
over, a way to identify outer edges of small rocks reducing
texture noise, and a method to describe the equatorial slices
of a small rock given a binary image using the signed turning
angle of a polygonal curve are introduced, section 3. Finally
results are presented in section 4 and possible future work
discussed in section 5.

2. Assumptions and definitions

Pebbles in nature usually have a smooth surface that could be
easily approximated by an ellipsoid. However, not all small
rocks have such property.

In the following it is assumed that the small rocks to
model could be slightly concave, that they have genus zero,
that the equatorial slice of a small rock is a star shaped set
with respect to its center, and that the reference image is ob-
tained so that the view direction of the camera is orthogonal
to the plane on which the small rocks lies. This choice is
made so that perspective can be ignored during the recon-
struction process. It is also assumed that the image is packed
with small rocks and no other surfaces are visible.

2.1. Generalized Ellipsoids

Following the idea of generalized cylinders, [BK85], let’s
define a parametrized generalized ellipsoid, GE : Sp→ IR3,
Sp = [0,2π)× [− π

2 ,
π

2 ], as an extension of an ellipsoid, al-
lowing its semi-principal axis to change for each point of the
parameter space Sp accordingly with some positive smooth
functions, f (ϕ,ϑ), g(ϕ,ϑ), h(ϕ,ϑ) from Sp to IR+\{0}.
A parametrization for GE is given by:

GE(ϕ,ϑ) =


x(ϕ,ϑ) = f (ϕ,ϑ)cos(ϕ)cos(ϑ)
y(ϕ,ϑ) = h(ϕ,ϑ)sin(ϑ)
z(ϕ,ϑ) = g(ϕ,ϑ)sin(ϕ)cos(ϑ)

(1)

It is clear that choosing the functions f (ϕ,ϑ), g(ϕ,ϑ),
h(ϕ,ϑ) as constants parametrization (1) yields a

Figure 2: (a) Edges obtained by the method presented in
this paper applied to figure 1a compared with (b) edges ob-
tained using Canny applied to the same image. Notice that
using Canny some texture changes have been caught.

parametrization of an ellipsoid, hence the name gener-
alized ellipsoid. In this paper, generalized ellipsoids will be
preferred over generalized cylinders as the former do not
require the computation of a sweep curve.

3. Method

Figure 1 illustrates the steps the method uses for the recon-
struction: a binary mask with the edges of each small rock is
computed, each equatorial slice description in polar coordi-
nates is then obtained from it, and finally the mesh of each
small rock is computed using a generalized ellipsoid.

3.1. Mask generation

Let’s represent the intensity of a w× h pixels image I as a
function f : IR2→ [0,1].
Edges in an image can be defined as sharp changes in the in-
tensity function. The standard way to determine this changes
is through derivation of the intensity function f or of the
colour channels of the image, [Can86,AMFM11]. However,
these methods detect changes in f that do not necessarily
correspond to an object contour, as in figure 2b.
In order to identify and suppress all the edges which are not
an object contour a median filter of radius r is applied to f ,
and then the notion of change in f is considered saying that
f changes whenever one of the following happens:

f (x,y)< τ f (x+ ε,y)
f (x,y)< τ f (x− ε,y)
f (x,y)< τ f (x,y+ ε)
f (x,y)< τ f (x,y− ε)

(2)

where τ ∈ [0,1], determines the change strength, and ε is a
small positive value, set to 1 in the experiments.
To identify contours of the equatorial slices the interval [0,1]
is subdivided in a set of L levels Li, i ∈ [0,L]. For each level
Li the changes in the intensity f are computed as in formu-
lation (2) . An image IL is then initialized setting all pix-
els to black. If at position (x,y) a change in f for level Li
is detected a value of 1

L is summed to IL(x,y). In the final
image IL pixels with sharp changes in f are brighter than

c© The Eurographics Association 2014.

30



M. Gilardi, P. L. Watten and P. Newbury / Unsupervised 3D reconstruction of small rocks from a single 2D image

other pixels. After a hysteresis thresholding process using
two thresholds tH and tL, connectivity analysis for detecting
and linking edges is applied. Figure 2 shows the results of
this algorithm compared to Canny edge detection. Although
the method proposed is less efficient than Canny, it produces
contours with less texture noise.

3.2. Equatorial slices description

Form the binary mask the polar representation of each equa-
torial slice from its center is computed as follows.

The mask is sampled superimposing a grid of m×n points
on it. Given a point not on an edge n rays are shot from it in
n directions, rays-edges intersections are computed and used
to build a closed polygonal curve P.
As edges in the mask are not complete those vertices of P
which are not on the outer edge of the equatorial slice have
to be removed. To do so a vertex is flagged as critical and
removed from P whenever

cos(αi)< aαT
sin(αi)< bαT

(3)

Where αi is the signed turning angle [GS08], a,b ∈ IR and
αT ∈ (0,1) is a threshold value. Check (3) is repeated un-
til no critial vertices remain in P, afterwards the center C
of P is computed and P itself is recomputed resampling the
mask from it. These steps are repeated until the center stabi-
lizes. Gaps in-between vertices, generated by the removal of
critical vertices, are filled using a Bezièr curve. The result-
ing polygonal is sampled from its center in 360 directions.
Points thus obtained are then used to compute the radii ri,
i ∈ {0,1, . . . ,359}, of P, which, together with C, are stored
to be used later for mesh reconstruction. Finally, the set of
pixels enclosed by the resulting polygon P is flood filled and
the initial samples enclosed in P are removed, figure 1c. The
algorithm is repeated for the remaining initial samples.

3.3. Mesh generation

Let’s consider parametrization (1) given in subsection 2.1,
and let’s require that f (ϕ,ϑ) = g(ϕ,ϑ), and that f and g are
constants with respect to ϑ

r(ϕ) = f (ϕ,ϑ) = g(ϕ,ϑ)

This is motivated by the result obtained in subsection 3.2
being ri a discretization of r(ϕ). Furthermore, let’s choose
the function h(ϕ,ϑ) to be constant

h = min
ϕ

r(ϕ)

as experiments have shown that this choice gives reasonable
shapes for small rocks and in particular for pebbles. Under
the choices made, vertices for a small rock can be computed
using the parametrization:

X(ϕ,ϑ) =


x(ϕ,ϑ) = r(ϕ)cos(ϕ)cos(ϑ)+Cx
y(ϕ,ϑ) = hsin(ϑ)
z(ϕ,ϑ) = r(ϕ)sin(ϕ)cos(ϑ)+Cy

(4)

Where C =
(

Cx Cy
)

is the center of the equatorial slice
computed in section 3.2. Once each vertex has been com-
puted the mesh is scaled so it matches the size in world coor-
dinates of the plane to which the image is applied as texture.
From (4) normals can be obtained normalizing:

N(ϕ,ϑ) =−

 h(x(ϕ,ϑ)− rϕ

r z(ϕ,ϑ))
r2

h y(ϕ,ϑ)
h(z(ϕ,ϑ)+ rϕ

r x(ϕ,ϑ))

 (5)

where the notation has been simplified writing r(ϕ) as r and
∂ϕr(ϕ) as rϕ. Texture coordinates are obtained using a planar
projection for each hemisphere.

4. Results

Figures 1 and 3 shows that the approach described in this
paper is capable of producing realistic small rocks models
and distributions that match a reference image. These re-
sults have been generated using a 64 bit DELL Precision
T1650, with a 4 cores Intel(R) Xeon(R) CPU at 3.4 GHz, 8
GB RAM, and an NVIDIA Quadro 2000 graphics card.

The average time for reconstructing a single image is
105.421 seconds, split as follows: 14.37% of the total time is
spent for the edges extraction phase, 85.08% for the equato-
rial slices reconstruction phase and, 0.56% for the mesh gen-
eration phase. The bottleneck is clearly the equatorial slices
reconstruction phase which takes the majority of the time.

Parameters described in section 3 have been estimated as
follows. All test images have been rescaled to have width
equal to 900 pixels and height determined by the image as-
pect ratio. For mask generation, L = 256, tH has been set to
the first quartile for the histogram of IL and then scaled to
stay in [0,1], while, following Canny [Can86], tL = tH

3 . For
equatorial slices descriptions the initial sampling grid was
set to w

5 ×
h
5 , and the number of initial sampling points to 90.

Experiments on a set of 80 images shown that a = 0.65 and
b = 0.5 give acceptable results for most of them, and that in
general a ∈ [0.5,0.75] is a good choice. The angle threshold
αT has been computed iteratively reducing its value from 1
toward zero by 0.01 steps, stopping whenever the minimum
number of vertices of the initial polygonal curve P, which
was set to 10, is reached. For the images in figure 3 the num-
ber of vertices interpolated by the Bezièr curve to close gaps
has been set to 5.

The method proposed to describe equatorial slices fails
to reproduce areas where edges meet with acute angles, re-
sulting in an over-segmentation of the equatorial slice of the
small rock near those areas, "crumbling" the mesh as shown
by the pink rock near the lower right corner of in figure 1e.

5. Conclusions and Future Work

In this article a method for unsupervised generation and dis-
tribution of large numbers of small rock models using a sin-
gle image has been described.
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Figure 3: Results obtained applying the method described in this article to different images of heterogeneous rocks (in sizes
and textures) under different lighting conditions, last image is rendered without texturing to show the reconstructed shapes.

An application of this method can be in the creation of dy-
namic terrains: changing a local section of the image based
texture into small rock meshes, animating them, and chang-
ing them back to a texture image afterwards

Although the method is capable to produce realistic mod-
els and distributions of small rocks, it relies on a series of
parameters that have been estimated heuristically. A possible
approach to automatically estimate those parameters could
involve machine learning techniques. However, it would
be nice to have a mathematical relationship between them
which allows automatic estimation. Such relationship will
be the object of further studies. Finally speed and efficiency
of the method can be improved, ideally parallelizing it for
GPU implementation.
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