
EUROGRAPHICS 2010 / H. P. A. Lensch and S. Seipel Short Paper

Adaptive Collapsing on Bounding Volume Hierarchies for

Ray-Tracing

A. Susano Pinto

Abstract

Ray tracing is a computationally intensive process, several tree data structures and heuristics have been developed

to optimize it. This paper presents a new heuristic in the area, based on collapsing some nodes in order to achieve

a smaller expected number of node-tests. Two ways of using this heuristic in Bounding Volume Hierarchies are

presented as well as the cost-model used to drive the heuristic development and measure it’s efficiency. Some

procedures on integrating this heuristic with other optimizations are also discussed.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Raytracing

1. Introduction

There has been a lot of research on optimizing tree data

structures for making ray tracing faster, such as Bound-

ing Volumes Hierarchies (BVH) which speed-up ray trace

queries by using an object space partition tree.

On BVH trees, each node has a bounding volume that

encloses the bounding volumes of all its childrens. Those

bounding volumes are often axis aligned to reduce the com-

putational cost of testing ray hits. The hierarchic tree struc-

ture is used to reduce the amount of primitive and bounding

volume tests needed in each trace, and has a great impact

on the pruning ability of the tree. The structure is usually

constructed by top-down and bottom-up greedy methods. No

optimal method is know for this generic construction prob-

lem [NT03].

One of the methods used to build a BVH is the top-

down greedy construction with surface area heuristic (SAH

[GS87]) which can be built in N logN. The final result of

that construction method is a binary search tree, which is

sometimes flattened to a quad [DHK08] [EG08] or to 16-

way trees [WBB08] to take advantage of SIMD.

In this paper, a new heuristic method to further optimize

already constructed BVH trees will be presented. It is based

on a generic version of BVH where each node can have a

variable number of childrens and uses that to achieve a tree

structure expected to work better than it’s original. Nonethe-

less the methods and heuristics developed can also be used

to enhance fixed-width trees as shown in Section 4.3 and can

be adapted to take advantage of SIMD.

1.1. RayCast on Bounding Volume Hierarchies

The process of ray tracing, or determining ray hits on a BVH

can be seen as a simple recursive process:

Algorithm 1 raytrace(ray,node)

1: if test_hit(ray,node.bounding_volume) then

2: test_primitives(ray,node)
3: for all node.childs do

4: raytrace(ray,child)
5: end for

6: end if

The core methods of this recursive transversal are

test_primitives() and test_hit(). The presented heuristic fo-

cuses on the test_hit() and tries to optimize the usefulness

of each call to that method by deciding which of those calls

can be removed.

2. Cost model

A cost function is used to measure the expected computa-

tional cost and assess the efficiency of a given structure. To

easy that process it was assumed that all rays hit the scene

enclosing bounding volume; only complete ray hit queries

are used, that is: all primitives hitting a given ray have to be

c© The Eurographics Association 2010.

http://www.eg.org
http://diglib.eg.org

André Susano Pinto / Adaptive Collapsing on Bounding Volume Hierarchies for Ray-Tracing

found; and all primitives are seen as enclosed by a bound-

ing volume, disallowing any deletion or modification on leaf

level nodes.

Let Phit(A|Aparent) denote the probability of a ray hitting

node A knowing it hits Aparent , which in the case of a BVH

structure represents the probability of needing to test chil-

drens of node A for ray hits, knowing that ray hits Aparent .

This function is expected to scale up to grandparents under

the form: Phit(A|C) = Phit(A|B).Phit(B|C).

Let Tcost(A) denote the computational cost to test if a

given ray hits node A, ie: number of instructions needed to

test ray hits against A bounding volume.

Using the previous functions it’s possible to define a ray

trace cost function, which can be used to analyze the ex-

pected cost of ray tracing on a given node A:

Rcost(A) = ∑(Tcost(child)+Phit(child|A).Rcost(child))

Considering only complete ray hit queries are used and

Phit is exact with a given set of N rays then N ∗Rcost(root)
would measure the exact cost of casting the set of rays on

root. Therefore any method capable of reducing Rcost(root)
would speed-up the tracing of the given set of rays on root.

It is desired that Phit exactly matches the probability ob-

tained if the set of rays that is going to be traced is known

in advance. But that is impractical, so heuristics have to be

used.

2.1. Surface Area Heuristic

A simple method to approximate Phit(A|parentA) is given by

the Surface Area Heuristic [GS87], where SA(n) denotes the

bounding box surface area of a node:

Phit(child|parent) =
SA(child)

SA(parent)

3. Ray/Node hit test

When traversing a BVH (Section 1.1) the function test_hit()
tests whether a ray hits a bounding volume. This function

is often intensive in terms of floating point operations and

memory access and is responsible for pruning ray traces

when it returns false.

False positives on that function can be tolerated as that

does not affects the final result. And although a false positive

leads to unnecessary test on a node’s childrens, it can actu-

ally be used to reduce the expected number of test_hit calls.

As shown on example at Figure 1, where Rcost(root1) = 3.2

and Rcost(root2) = 3.

That type of case is of great interest to optimize the tree

structure and in the following sections the reason for their

existence is discussed and a condition to determine those

cases according to the presented model is showed.

Figure 1: Collapsing node example, showing removing

nodes can reduce the expected number of ray-nodes tests.

The tree on the right was obtained by removing node B from

the left one.

3.1. Collapsing nodes

Often the value of Phit(A|Aparent) for a given node is large,

showing that the tree organization is introducing a test_hit

call in which the transversal algorithm rarely can deduce

useful information for pruning the search.

This type of case especially happens in binary BVHs,

where the primitives belonging to a node are only split in

two, generating large child volumes and as a consequence a

large Phit . Incorrectly chosen split points can also lead to this

effect by creating large child bounding volumes.

3.2. Collapse-node condition

Based on the presented cost model, the nodes that can be

collapsed with the objective of decreasing the expected Rcost

(Section 2) can be detected by the condition:

Rcost(A)+Tcost(A) > ∑(Tcost(c)+Phit(c|Aparent).Rcost(c))

4. Method

After identifying an operation that can reduce a tree Rcost , an

automatic process of applying that operation until a tree no

longer can be optimized can be found. Two such optimiza-

tion algorithms are presented.

The first, a greedy approach, reachs a local minimum in a

single pass over the tree. The second tries to find the global

minimum for Rcost that can be achieved by only applying

collapsing nodes, which can be seen as merging its childs

on the node’s parent. The efficiency of both methods is later

compared in Section 5.

4.1. Greedy top-down method

Assuming Tcost is constant the condition presented on Sec-

tion 3.2 can be reduced into:

1+Phit(A|Aparent).Anchilds >= Anchilds

c© The Eurographics Association 2010.

74

André Susano Pinto / Adaptive Collapsing on Bounding Volume Hierarchies for Ray-Tracing

Being possible to calculate this condition locally a top-

down greedy method for optimizing a given BVH tree can

be created (Algorithm 2). This algorithm recursively col-

lapses nodes matching the presented condition. Although

non-optimal, its linear run-time and reduced memory usage

may be desirable in many cases.

Algorithm 2 pushup(node)

1: q← queue()
2: append all node.childs on q

3: clear node.childs

4: while not q.empty do

5: child← q.pop()
6: subchilds← child.nchilds

7: if 1+Phit(child|node).subchilds >= subchilds then

8: append all child.childs on q

9: else

10: pushup(child)
11: append child on node.childs

12: end if

13: end while

4.2. Optimal Collapse-Node method

This method tries to find the minimum Rcost possible to

reach on a tree by only collapsing nodes on it. The optimized

tree can then be built by back-tracking.

For that, Rcost(node) function is changed into

Rcost(node, size) which represents the minimum cost

needed for a sub tree rooted in node with size entry

points, or in order words, it finds a tree-cut not greater

than size where ∑Phit(cut_node|node).Rcost (cut_node) is

smallest. This transformation allows the use of a dynamic-

programming approach to efficiently find a global minimum

value for Rcost as showed on Algorithm 3.

Due to efficiency reasons, the maximum number of

childrens a given node can have has to be fixed at

MAX_CHILDS, but that is believed to not have a big impact.

Under this the algorithm can run in 2N.MAX_CHILDS2.

To allow the algorithm to adapt to group testing, a useful

feature under SIMD instructions, T_cost(Nnodes) is used to

represent the computational cost of simultaneously testing if

a ray hits N different nodes. As an example, on a 4-SIMD

machine test_group4 coud be used as cost function.

test_group4(Nnodes) =

⌈

Nnodes

4

⌉

The presented Algorithm 3 can be extended to work

with non-binary trees as input, but that is outside the

scope of this paper, as most build methods generate

binary trees. Nonetheless, a working version for opti-

mizing variable width trees and with back-tracking to

reconstruct the optimal tree is available for download

(http://andresp.no-ip.org/page/EG2010/).

Algorithm 3 Rcost(node,cutsize)

1: if is_lea f (node) then return Tcost(1)
2: if not calculated cost_memoization[node] then

3: cost ← array[]
4: cost[1]←∞
5: for t in (2..MAX_CHILDS) do

6: cost[t]←∞
7: for i in (1..t− 1) do

8: r = Rcost(node.le f t, i)+Rcost(node.right, t− i)
9: cost[t]← min(cost[t], r)

10: end for

11: cost[1]←min(cost[1],Tcost(t)+ cost[t])
12: end for

13: cost_memoization[node]← cost

14: end if

15: return min(cost_memoization[node][1..cutsize])

4.3. Easy adaptation to fixed-width BVH

One of the negative sides of applying this heuristic by eras-

ing a node is the creation of nodes with a variable number of

childrens. This can increase the complexity of implementing

optimizations tightly related to the concept of a binary tree,

for example, a search order heuristic. It’s suggested that in

those cases, a flag can be used on each node indicating where

a hit test should be performed or should be skipped by as-

suming it would return true, thus allowing the tree to keep

it’s original structure.

5. Results

To aid measurement of the efficiency of the developed meth-

ods, 4 different types of BVH and 3 variables were used.

5.1. Data structures

de f ault binary BVH tree built using a SAH heuristic

STgreedy BVH built from de f ault using method in Sec-

tion 4.1

QBVH 4-ways BVH tree built from de f ault by colapsing

odd depth-levels of the tree

STdp BVH built from de f ault using method in Section 4.2

with MAX_CHILDS = 15.

5.2. Variables

Tree size the number of nodes needed for the tree

Rcost the value of Rcost(root) using Tcost(N) = N

BB tests/ray the number of BB-tests per ray

The results were obtained by rendering two scenes, using

ray trace only on secondary rays. On all trace queries, all

hits were found even when only one or the closest hit was

needed. It’s important to recall that according to the original

constraints, a node could only have one primitive, this leads

to none of leaves BB be a candidate to collapse.

c© The Eurographics Association 2010.

75

http://andresp.no-ip.org/page/EG2010/

André Susano Pinto / Adaptive Collapsing on Bounding Volume Hierarchies for Ray-Tracing

Figure 2: Bottle Collection: 1077K faces, 77M rays, ∼16

primitive tests/ray.

Figure 3: Kitchen: 387K faces, 91M rays, ∼20 primitive

tests/ray.

The results in Figure 2 and Figure 3 show that reducing

Rcost does have an effect on the number of hit tests needed

during a ray trace. It also shows that part of the QBVH per-

formance does not come from taking advantage of SIMD

but by actually using wider trees, being that the type of ad-

vantage that STgreedy and STdp are able to better explore.

Besides the presented algorithms also lead to small trees,

bringing both smaller memory bandwidth and memory foot-

print.

6. Conclusion and Future Work

This paper introduces a new heuristic that achieves a reduced

expected number of node tests on ray trace queries by detect-

ing which nodes on a tree should be collapsed. It was already

known that collapsing nodes could lead to an efficiency in-

crease but there were lack of methods to detect and apply

that heuristic. Two such methods were presented.

This study shows that according to a cost model, an opti-

mal selection of nodes to be collapsed can be found in poly-

nomial time and memory and that in practice that algorithm

is linear in the number of nodes. With the proper Tcost func-

tion this method allows exploiting SIMD instructions.

The impact of using a heuristic more exact than SAH is

still unknown, although that can be studied by using an exact

heuristic (ie: by performing ray trace twice), and if worth-

while some time can be spent on developing more accurate

or live adaptable Phit heuristics.

Although this heuristic has been presented with the main

focus on BVH data structures it’s expected that the general

idea can be implemented on other hierarchical search prob-

lems.

Finally, precautions were taken and discussed to make

sure the introduced methods can be easily applied with other

algorithms, and in that sense the author expects to have con-

tributed to an easy integration with them.

7. Acknowledgments

The author would like to thank the Google Summer of

CodeTM2009 project, during which he was able to study, de-

velop and implement the ideas presented in this paper. And

also to the Blender Foundation and it’s community which

provided the scenes to test and a code base to develop in.

References

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow
bounding volume hierarchies for fast SIMD ray tracing of in-
coherent rays. In Computer Graphics Forum (Proc. 19th Euro-
graphics Symposium on Rendering) (2008), pp. 1225–1234.

[EG08] ERNST M., GREINER G.: Multi bounding volume hier-
archies. In IEEE Symposium on Interactive Ray Tracing, 2008.

RT 2008 (2008), pp. 35–40.

[GS87] GOLDSMITH J., SALMON J.: Automatic creation of ob-
ject hierarchies for ray tracing. IEEE Computer Graphics and

Applications 7, 5 (1987), 14–20.

[NT03] NG K., TRIFONOV B.: Automatic bounding volume hier-
archy generation using stochastic search methods. In CPSC532D
Mini-WorkshopâĂİ Stochastic Search Algorithms (2003), Cite-
seer.

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting rid
of packets-Efficient SIMD single-ray traversal using multi-
branching BVHs. In IEEE Symposium on Interactive Ray Trac-

ing, 2008. RT 2008 (2008), pp. 49–57.

c© The Eurographics Association 2010.

76

