EUROGRAPHICS 2010/ H. P. A. Lensch and S. Seipel

Short Paper

Ray Tracing using Hierarchies of Slab Cut Balls

Linus Killberg and Thomas Larsson

Mailardalen University, Sweden

Abstract

In this paper, bounding volume trees of slab cut balls are evaluated and compared with other types of trees for ray
tracing. A novel tree construction algorithm is proposed, which utilizes a relative orientation heuristic between
parent and child nodes. Also, a fast intersection test between a ray and a slab cut ball is presented. Experimental
comparisons to other commonly used enclosing shapes reveal that the slab cut ball is attractive. In particular, the
slab cut ball outperforms the sphere in all tested scenes with speed-up factors between I and 4.

Categories and Subject Descriptors (according to ACM CCS): [1.3.6]: Methodology and Techniques—Graphics data
structures and data types, [1.3.7]: Three-Dimensional Graphics and Realism—Raytracing

1. Introduction

One of the most widely used data structures for ray tracing
is the bounding volume hierarchy (BVH) [KK86, WBS07,
DHKO7]. This paper presents an initial study on ray tracing
using an enclosing shape called the Slab Cut Ball (SCB) in
the BVH. An SCB is the intersection volume of the space
between two parallel planes, also known as a slab, and a
sphere (or ball). The sphere is represented by a center point
¢ and radius r, and the slab by a normal n, defining the orien-
tation, and signed distances e and f to the slab planes mea-
sured from c; see Figure 1. This type of bounding volume
has been utilized recently in collision detection with promis-
ing results [LAMO9].

The main advantages of the SCB is its ability to provide
fast intersections tests, low transformation costs, and tight-
fitting approximations of geometric models at a low memory
cost. In particular, for rays traveling along smooth surfaces
of low curvature, the worst case behavior of looser-fitting
BVs in the tree traversals can be avoided. This is illustrated
in Figure 2. Handling this situation well is important to lower
the number of required intersections tests in ray shooting.

The main contributions are (1) a top-down construction
algorithm for creating tight-fitting SCB trees using a child
orientation heuristic; (2) an efficient ray/SCB intersection
test; and (3) an experimental comparison of using BVHs of
SCBs, balls, AABBs, and OBBs for ray tracing. More details

(© The Eurographics Association 2010.

Figure 1: The parameters used to represent the SCB (left)
and an example SCB enclosing a 3D model (right).

about the presented techniques are given in a companion re-
port [Kdl09].

2. Tree construction

The SCB tree is constructed using a recursive top-down
strategy. In each step, an SCB is computed to tightly en-
close the geometry, and then the primitives are partitioned
into two groups on which the algorithm recurses. A leaf is
created when there is only one primitive left in a group.

To compute a tight-fitting SCB, first a nearly optimal ball
is computed using the EPOS-26 algorithm [Lar08]. A slab
is then found by computing a tight-fitting OBB around the
geometry and choosing one of its three slabs. Most straight-
forward would be to choose the slab giving the smallest sur-
face area of the SCB, but as is discussed in the following,

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

70 L. Killberg & T. Larsson / Ray Tracing using Hierarchies of Slab Cut Balls

&

Figure 2: Cross-sections showing three levels of a sphere
tree (left) and one level of a SCB tree (right). Both trees
are enclosing the same tessellation of a blue smooth surface.
Whereas the red ray intersects all 15 BVs in the sphere tree,
not a single BV is hit in the SCB tree.

“

Figure 3: The child orientation heuristic can help to in-
crease the pruning power in cases where the SCBs are quite
poor-fitting by themselves. The top row shows three views of
a pencil model together with the first two levels of its SCB
tree. In the bottom row, pixels for which the eye rays hit both
the parent and child SCBs are highlighted. Clearly, the ap-
proach causes many rays to be rejected from further process-
ing on the second level of the BVH.

better results are possible by considering the other two slabs
as well.

The situations when the SCB with the smallest surface
area might not be the best choice are when the geometry be-
ing enclosed is long and thin. This kind of geometry cannot
be tightly enclosed by SCBs, but by using a slab with a large
angle to the slab of the parent, much of the empty space in
the parent is cut away by the child. Therefore, a larger SCB
might be a better choice than a smaller one if it is oriented
more orthogonal to the parent.

A child orientation heuristic is used to weigh in this prop-
erty in the choice of slab by computing the resulting SCB
surface areas A;, 0 < i < 2, when using the different slabs,

and then choosing the slab giving the smallest reduced sur-
face area A}:

Al = (1 — p-ortho(n;,np))A;, M

where n; is the normal of the ith slab, np is the normal of the
parent’s slab, and ortho measures the degree of orthogonality
between them, giving a value ranging from 0, meaning com-
pletely parallel, to 1, meaning completely orthogonal. The
parameter p € [0, 1] controls how much this relative orienta-
tion between the child and the parent should be weighed in at
the expense of the surface area; a value of p = 0 corresponds
to the simple approach of choosing the smallest SCB. Tests
of different values of this parameter have shown that p ~ 0.2
is a good choice. The benefits of using the proposed child
orientation heuristic when dealing with long thin geometric
models is illustrated in Figure 3.

After the SCB has been computed, the primitives are
partitioned into two groups using a strategy similar to
Wald et al. [WBSO07]. A set of candidate partitions are gener-
ated, and then the best one is identified using a surface area
heuristic (SAH):

cost(np,ng) = SA(np)|nr| + SA(ng)|ng

, (@)

where ny and ng are the resulting left and right groups of
primitives, respectively, and SA gives the surface area of an
enclosing OBB with the same orientation as the OBB used in
the SCB fitting step. The reason for using OBBs for the sur-
face area factors instead of SCBs is that OBBs better approx-
imate the shape of the underlying geometry, so this generally
leads to better decisions. Also, reusing the orientation of the
previous OBB speeds up the computation of these OBBs,
which then simply amounts to computing their extents.

The candidate partitions are generated using a set of par-
titioning planes, where each plane gives a partition by cat-
egorizing the primitives based on which side of the plane
their centroids lie. The planes are taken to be parallel with
the sides of the OBB used in the SCB computation, which
gives three different plane orientations. For each orientation,
a plane is first positioned so that it separates one primitive
from the rest. An OBB is then fitted to this primitive so that
the left term in the cost function can be calculated and stored
into the first element of an array. This array will later hold the
costs for all the partitions generated with the current plane
orientation. The plane is then repeatedly repositioned so that
one primitive moves over to the other side at a time, until
all but one primitive have changed side. This can be done
efficiently by first sorting the primitives on the projections
of their centroids onto the plane normal. At each step, also
the OBB is enlarged to enclose one more primitive, and a
cost term is calculated and stored into the cost array. A sim-
ilar procedure is then carried out where a plane is repeatedly
repositioned in the opposite direction, and an OBB is repeat-
edly enlarged so that the right term of all the partition costs
can be calculated and added to the cost array. After doing this

(© The Eurographics Association 2010.

L. Kdllberg & T. Larsson / Ray Tracing using Hierarchies of Slab Cut Balls 71

with all three plane orientations, the best partition is found
by scanning the cost arrays.

INTERSECTIONFINITERAYSCB(R, S)
input: R(r) =o0+1d,7€[0,], S = {c,r,n,e, [}
output: The intersection status (true or false)

1. o <—o—c

2. k<o -n

3. if lo'||> < /2 and f < k < e then return true
4. b+o -d

5. if HO/H2 — b? > 7 then return false
6. l+d-n

7. U1/

8. to +1U'(e—k)

9. < U(f—k)
10. if 1y > r; then SWAP(19,11)
11. if 1, < 19 or t; < O then return false
12. In —b
13. tn < clamp(ty, [0,1,])
14. tn < clamp(tn, [f0,11])
15. return ||0/||2—§—(—b—t,1)2—b2 <r?

Figure 4: Intersection test between a ray R and a slab S.

3. Intersection tests

In Figure 4, pseudocode for the developed ray/SCB inter-
section test is given. The upper bound #;, on the ray length
is updated when primitives are intersected, to support effi-
cient rendering of scenes with high depth complexity. First,
it is tested whether the ray starts inside the SCB or not. If
it does, an intersection has been trivially found (Lines 1-3).
Similarly, if the ray misses the ball entirely, intersection has
been trivially rejected (Lines 4-5). Then, the parametric val-
ues where the ray enters and leaves the slab are calculated
and sorted (Lines 6-10), and if it turns out that the finite ray
does not reach the slab, intersection is rejected (Line 11).

After this, the intersection status can be determined by
considering the point on the ray located inside the slab and
also closest to the center ¢ of the SCB. First, the paramet-
ric value ¢ = ¢, for this point is initialized to —b (Line 12),
which gives the point closest to ¢ on the infinite line coin-
cident with the ray. Then #, is adjusted to its correct value
by two clamping operations, first to the parameter interval
of the finite ray and then to the parameter interval where the
ray passes through the slab (Lines 13—-14). Now, if this point
R(tn) is located inside the ball, the finite ray hits the SCB,
otherwise the ray and the SCB are disjoint (Line 15).

Finally, the cases where the ray is parallel to the slab
planes deserve some consideration, since then / = (. For-
tunately, by relying on the IEEE-754 interpretation of divi-
sion by zero, the problem can be solved without introducing
any special cases. When the parallel ray is inside the slab,

(© The Eurographics Association 2010.

tg = —oo and #; = oo. If the parallel ray is outside the slab,
tg and #; will be equal and either —oco or co. None of these
cases presents any problem for the algorithm as it is pre-
sented. The potential problem of calculating 0/0, resulting
in the value NaN, has been avoided by factoring out the di-
vision by [(Lines 7-9).

4. Results

For evaluation, ray tracing performance has been measured
for the scenes shown in the top row of Table 1. The Rings
and Tree scenes are due to Eric Haines, and the Echino-
dermania II model is due to George W. Hart. The experi-
ments have been repeated with SCB trees built with p =0
and p = 0.2, and also with ball trees, AABB trees, and OBB
trees. All trees are built using variants of the SAH, and they
are all traversed in an identical manner. The ray/ball inter-
section test comes from the book by Ericson [Eri05], but has
been extended with a simple test to reject hits lying beyond
the nearest hit with a primitive. The ray/OBB intersection
test comes from the Wild Magic library version 4.10 (“3D
segment/box”), but some optimizations inspired by a simi-
lar ray/AABB intersection test in Ericson’s book have been
applied. The ray/AABB intersection test used is the publicly
available code by Eisemann et al. [EGMMO7]. The code has,
however, been slightly reformulated to also reject hits lying
beyond R(t;). All runs have been executed single-threaded
on a laptop PC with a 2.53GHz Intel Core 2 Duo T9400
CPU and 3.48 GB of RAM, running Windows XP SP3. The
program has been compiled with Microsoft Visual C++ 2005
using the standard release configuration.

The measured data is shown in Table 1. In four of the
scenes, the SCB trees have better performance than all the
other trees. It is clear that extending the ball with a slab gives
substantial improvements in intersection test counts and per-
formance. The SCB trees are outperformed by other trees
in Bars, Conference, and slightly in Bunny. The first two of
these scenes contain a lot of long and thin triangles, which
makes them a challenge for the SCBs. Furthermore, these tri-
angles are axis-aligned, which makes them easy for AABBs
to enclose tightly. In these two scenes, also the largest effect
of changing the parameter p from 0 to 0.2 is observed—a
14 % performance improvement in Conference and 30.5 %
in Bars—and this supports the rationale of the child orien-
tation heuristic. However, in Rings and Tree, the SCB trees
have the best performance of all trees, which is surprising be-
cause these scenes also have a lot of long and thin triangles,
so they are expected to be a challenge for the SCB trees as
well. On these scenes, the OBB trees are expected to excel,
because the geometry is not axis-aligned, and OBBs have a
superior ability to adjust to such geometry, but only on Rings
the OBB tree performs slightly better than the AABB tree.

The ball trees have reasonable performance on some of
the scenes, but on others, in particular those that present dif-
ficulties for the SCB trees, their performance breaks down

72

L. Killberg & T. Larsson / Ray Tracing using Hierarchies of Slab Cut Balls

I

Scene Tri. SCB tree (p = 0) SCB tree (p = 0.2) Ball tree OBB tree AABB tree
count t Ny N; t Ny N; t Ny N; t Ny Ny t Ny Ny

Echino. | 124.3 | 2.043 2124 1.24| 2.045 2097 1.26| 2.190 3146 4.51| 4.668 29.89 548| 3.418 3845 9.64
Knots 448 1463 14.67 0.68| 1437 14.17 0.65| 1.980 25.53 5.16| 2384 17.63 1.30| 1.837 2475 4.10
Bars 0.6 5.896 28.31 19.71| 4.100 21.77 12.04|16.644 8538 80.02| 1.357 7.70 1.24| 0.809 8.18 1.25
Confer. | 282.8| 4.555 3543 7.86| 3917 3294 591|14.172 118.17 62.16| 3.558 26.59 2.61| 2.044 28.28 4.87
Rings |554.4]19.945 161.42 30.34|18.500 159.86 23.63 | 41.355 324.06 179.39|19.680 156.43 7.88|22.601 187.24 83.33
Bunny | 69.5| 1.302 14.60 0.63| 1.291 1444 0.63| 1.494 2443 249| 1989 1497 1.07| 1.139 17.30 1.76
Tree 540.5| 1.751 16.60 1.87| 1.694 16.62 147| 3.339 31.70 11.08| 2910 16.52 3.07| 2.434 20.32 6.26

Table 1: Benchmark scenes and results. The table shows triangle counts in thousands, rendering times t in seconds, number of
ray/BV tests Ny, and ray/triangle tests Ny in millions. The abbreviated names refer to “Echinodermania I1” and “Conference”.

completely; on Bars, the rendering takes 20 times longer
with the ball tree than with the AABB tree, and 4 times
longer than with the SCB tree. They also have poor perfor-
mance on Rings and Tree.

The OBB trees consistently have low intersection test
counts. However, due to the costly ray/OBB intersection test,
they almost never perform better than the AABBs, except
on the Rings scene, where the oriented geometry cannot be
tightly enclosed by AABBs. They also perform well on Bars
and Conference, where their ability to enclose the long and
thin triangles gives them an advantage over SCBs and balls.

Drawing from the results on Bars and Conference, AABB
trees clearly are the most appropriate choice in scenes with
much axis-alignment. On scenes with little axis-alignment,
in contrast, they become quite loose-fitting and incur more
intersection tests than shapes with an ability to adjust their
orientation. Despite this, however, on Bunny, the AABB tree
has better performance than the SCB and OBB trees, which
indicates that they have a faster intersection test.

5. Conclusions

The results indicate that the SCB in many situations is able
to lower the number of intersection tests compared to other
bounding volume shapes, and due to the quick ray/SCB in-
tersection test, this also leads to competitive rendering times.

In the future, it would be interesting to repeat this study
using a highly optimized ray tracer striving for real-time
rendering by utilizing the parallelization capabilities of re-
cent hardware. Possible extensions to deal with deformable
scenes would also be important to explore [WMG™09]. Fur-
thermore, in addition to the bounding shapes used for com-
parison in this paper, other shapes exist that may be com-
petitive, such as cylinders, k-DOPs, and sphere-swept vol-
umes [KK86, Eri05].

Besides ray tracing, SCB trees may also be advantageous

for accelerating more sophisticated global illumination al-
gorithms. For example, when simulating various scattering
effects and ambient occlusion, the number of rays that travel
in parallel with the surface geometry may raise significantly
in certain cases. The proposed tree construction algorithm
is also likely to be beneficial in collision detection. In par-
ticular, using the child orientation heuristic may be crucial
for certain relative configurations between shapes with elon-
gated primitives [LAMO9].

References

[DHKO7] DAMMERTZ H., HANIKA J., KELLER A.: Shallow
bounding volume hierarchies for fast SIMD ray tracing of inco-
herent rays. Computer Graphics Forum 27,4 (2007), 1225-1233.
1

[EGMMO07] EISEMANN M., GROSCH T., MAGNOR M.,
MUELLER S.: Fast ray/axis-aligned bounding box overlap tests
using ray slopes. journal of graphic tools 12, 4 (2007). 3

[Eri05] ERICSON C.: Real-Time Collision Detection. Morgan
Kaufmann, 2005. 3, 4

[Kdl09] KALLBERG L.: Accelerating Ray Tracing using Bound-
ing Volume Hierarchies of Slab Cut Balls. Master’s thesis,
Milardalen University, Sweden, October 2009. 1

[KK86] KAYT.L., KAJtyAJ. T.: Ray tracing complex scenes. In
Proceedings of the 13th annual conference on Computer graph-
ics and interactive techniques (1986), pp. 269-278. 1, 4

[LAMO9] LARSSON T., AKENINE-MOLLER T.: Bounding vol-
ume hierarchies of slab cut balls. Computer Graphics Forum 28,
8(2009), 2379-2395. 1,4

[Lar08] LARSSON T.: Fast and tight fitting bounding spheres.
In Proceedings of The Annual SIGRAD Conference (November
2008), Linkoping University Electronic Press, pp. 27-30. 1

[WBS07] WALD I., BoUuLOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Transactions on Graphics 26, 1 (2007). 1,2

[WMG*09] WALD I., MARK W. R., GUNTHER J., BOoULOS S.,
1ZE T., HUNT W., PARKER S. G., SHIRLEY P.: State of the art
in ray tracing animated scenes. Computer Graphics Forum 28, 6
(2009), 1691-1722. 4

(© The Eurographics Association 2010.

