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Abstract
Shape deformation and editing are important for animation and game design. Based on as-rigid-as-possible
(ARAP) surface modeling, an efficient approach is proposed to approximately preserve the volume of an object
with large-scale deformations. The classical ARAP surface modeling uses two-stage iterations to recover rota-
tions and preserve edge lengths. However, there is no volume preserving constraint, which may cause undesired
artifacts. We show that the volume can be roughly kept by leveraging the skeleton information. First a skeleton
is selected, and points are evenly generated on the skeleton. Then each point is correlated with several vertices
on the surface of the object. The connectivity between the skeleton and the surface is defined as skeleton edges,
which can be easily added into the linear system of the ARAP method as additional rows without breaking the
manifoldness or sacrificing speed. Since this linear system is able to preserve the lengths of both the surface and
skeleton edges, the area of cross sections and the volume between cross sections can be approximately preserved.
In our experiments, we show that the rotations are natural and volumes are roughly kept. The system achieves real
time performance for surface meshes with 5k vertices.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—geometric algorithms, languages, and systems

1. Introduction

Shape deformation is widely used in many applications such
as animation, game design and virtual reality. During the
past decade, people have put a lot of effort in as-rigid-as-
possible (ARAP) shape modeling to obtain natural defor-
mations. ARAP deformation means that the shape should
be locally preserved, and the deformations are locally simi-
lar. Previous works try to constrain transformation matrices
to achieve the ARAP effect. In 2D, there have been many
excellent methods. Alexa et al. [ACOL00] successfully ap-
plied ARAP deformation to shape interpolation. Sorkine et
al. [SCOL∗04] showed that the similarity transformation in
2D can be completely characterized with a linear expression.
Igarashi et al. [IMF05] presented a two-step closed form al-
gorithm to deform 2D shapes. The first step allows transla-
tion, rotation and uniform scaling. The second step adjusts
the scaling locally. Schaefer et al. [SMW06] devised a mov-
ing least squares framework for 2D space warping, where
each element of the space grid deforms ARAP, and the warp-
ing is controlled by positional constraints on several grid
points. These methods have shown promising performance
on 2D ARAP deformations.

3D ARAP deformation is more challenging because of
the nonlinearity of similarity transformations. Botsch et
al. [BK04] formulated a linearized system to represent
ARAP deformation. It allows an efficient optimization, but
causes artifacts such as local details and general shape dis-
tortions for large deformations. Zorin et al. [ZSS97] pro-
posed a multi-resolution technique to deform low-frequency
components of the surface first, followed by adding back
high-frequency details as local displacements. However, this
solution leads to local self-intersections when the deforma-
tion introduces bending. Sorkine et al. [SCOL∗04] proposed
Laplacian Surface Editing (LSE), which uses a first-order
approximation of similarity transformations. It works well
when only moderate rotations are involved in the deforma-
tion. Nonlinear ARAP approaches were also proposed, such
as the volumetric graph Laplacian [ZHS∗05], Laplacian con-
straints [HSL∗06], PriMo [BPGK06] and ARAP surface
modeling [SA07], all of which produce compelling results.
Particularly, [SA07] uses an iterative scheme to minimize
its carefully designed energy formulation, which is easy to
implement and closely related to the widely used LSE. The
rotations are natural and edge lengths are preserved, even for
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large scale deformations. However, there is no volume pre-
serving constraint in this system, which may cause undesired
artifacts.

Based on ARAP surface modeling, we propose an effi-
cient and easy-to-implement approach to approximately pre-
serve the volume by leveraging skeleton information. The
energy formulation of [SA07] is adopted to obtain rotations
and to preserve edge lengths. In addition, a skeleton is gen-
erated and points on the skeleton are correlated with vertices
on the surface. The connectivity of each cross section is de-
fined as skeleton edges and is added into the traditional lin-
ear ARAP system as additional rows. Using the edge length
preserving property, the cross section area and volume can
be roughly preserved. The contributions of our method are
the following: 1) We propose an approach to integrate the
skeleton information with ARAP surface modeling to ap-
proximately preserve the volume without breaking its man-
ifoldness or sacrificing the speed; 2) In terms of implemen-
tations, our approach can be easily extended from modeling
frameworks relying on LSE or ARAP surface modeling.

2. Algorithms

Linear LSE: Laplacian coordinates represent each point as
the weighted difference between such point and its neigh-
borhoods. Given original coordinates (V = [v1, ...,vn]T ), the
connectivity, and m control points, the coordinates of the
reconstructed object (V ′ = [v′1, ...,v

′
n]T ) can be obtained by

minimizing the quadratic energy function:

‖LV ′−δ‖2
2 +Σ

m
i=1‖v′ci − vci‖

2
2 (1)

where L represents the discrete Laplace-Beltrami operator
using uniform or cotangent weights [PP93], [NISA06], δ =
LV (computed in the beginning), and vc denotes the control
point. The first term penalizes the shape difference after re-
construction, and the second term penalizes the change of
positions of control points. With m control points, (1) can be
minimized as a (n+m)×n overdetermined linear system:[

L
Ic

]
V ′ =

[
δ

Vc

]
(2)

where Ic is the index matrix of Vc, which maps each V ′
c to

Vc. The reconstructed shape looks generally natural when
rotations are small.

Rotation and edge constraints: [SA07] introduced a non-
linear approach to find natural rotations, which consists of 2
steps. In the first step, an initial guess is calculated by linear
LSE (or defined as the previous frame). In the second step, a
rotation matrix Ri is computed for each vertex by minimiz-
ing:

Σ j∈N(i)‖(v
′
i − v′j)−Ri(vi− v j)‖2

2 (3)

where N(i) represents the set of neighbors of the ith vertex
and Ri is the rotation matrix for the ith vertex and depends

on its neighbors. Minimizing (3) amounts to minimizing the
change of edge lengths. Denoting the edge ei j = vi−v j, one
can write the covariance matrix Si as:

Si = Σ j∈N(i)(wi jei je
′T
i j ) (4)

where wi j is the cotangent weight of ei j, and e′i j is the edge
after reconstruction. The rotation matrix Ri of the ith vertex
is derived from the singular value decomposition (SVD) of
the covariance matrix Si = UiΣiV T

i , and Ri = ViUT
i [SA07],

[Sor09]. A new linear system is then obtained by plugging
Ri into the righthand side of (2) based on the derivative of (3)
that ensures convergence [SA07]. The two procedures can be
alternately performed to recover natural rotations when there
is no large stretching. However, there is no volume preserv-
ing constraint in this method.

Skeleton and volume constraints: Volume preservation is
important in many real-world applications. By using the vol-
umetric mesh, the volume magnitude can be preserved to
some degree. However, the volumetric mesh conflicts with
traditional ARAP and Laplacian methods, which are de-
signed for 2D manifolds. Furthermore, it increases the com-
putation time. In this work, the skeleton information is incor-
porated to approximately keep the volume without breaking
the manifoldness or significantly increasing the computation
complexity.

To initialize the model, two steps are needed. In the first
step, a skeleton is manually defined, and points are evenly
generated from the skeleton (black spheres in Fig. 1). Since
our focus is on the deformation, robust and automatic skele-
ton extractions are left for future investigation. In the second
step, each skeleton point is correlated with vertices on the
surface (grey points in Fig. 1). In this step, rays perpendic-
ular to the skeleton segment are emitted from each skeleton
point and intersected with the surface. The surface vertices
closest to these intersections are connected to that skeleton
point. The connectivity between skeleton points and surface
vertices is defined as skeleton edge (dashed lines in Fig. 1).
Skeleton edges corresponding to the same skeleton point de-
fine a cross section (grey discs in Fig. 1). Although the ob-
ject’s topology changes after adding skeleton edges, the sur-
face and each cross section are still 2D manifolds, which can
be easily added to the ARAP framework. Note that there are
no skeleton edges between skeleton points, since this would
break the manifoldness.

By minimizing (3), the optimization strives to converge to
a state where the edge length error is small if the modeling
constraints do not impose large stretching on the surface. Be-
cause of the length preservation of both skeleton and surface
edges, the areas of triangles consisting of these edges are
kept when skeleton edges are relatively dense. Thus areas
of cross sections consisting of these triangles are approxi-
mately the same. Combining the areas with surface edges
connecting two cross sections, the volume in between can
be roughly kept unchanged. Based on the same idea, the vol-
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Figure 1: Left: the skeleton points (black spheres) are inside
the cylinder. Each point is connected to surface vertices by
skeleton edges. Right: a cross section view, corresponding
to a grey disc on the left. The skeleton edges are represented
by dashed lines. Grey points are on the cylinder’s surface.
Wi j is the cotangent weight of the skeleton edge below it,
calculated as Wi j = 1

2 (cotα+ cotβ) [NISA06].

ume of the main object is approximately preserved during
deformations, to the extent allowed by the constraints (3).
To add these skeleton edges as new constraints, we append
additional rows to (2): L | 0

Ic | 0
Ls

[
V ′

V ′
s

]
=

 δ

Vc
δs

 (5)

where Ls, V ′
s and δs are respectively the Laplace-Beltrami

operator, cartesian coordinates and Laplacian coordinates of
skeleton points. Assuming there are l skeleton points and m
control points, then (5) is a (n + m + l)× (n + l) overdeter-
mined linear system. Since Ls depends on the connectivity
and relative positions between skeleton points and surface
vertices, it multiplies both V ′ and V ′

s to compute δs, while L
only depends on V ′ when computing δ. In other words, V ′

s
is coupled to V ′, but not vice versa. This setting ensures that
the first (n + m) rows are the same as (2), except additional
l zero columns. Thus the shape and control point constraints
are the same. The newly added l rows naturally incorporate
the volume preserving constraint without breaking the orig-
inal system. As (2) corresponds to (1), solving (5) amounts
to minimizing the following energy function:

‖LV ′−δ‖2
2 +‖LsV ′

all −δs‖2
2 +Σ

m
i=1‖v′ci − vci‖

2
2 (6)

where V ′
all contains all surface vertices and skeleton points.

Thus adding these new constraints corresponds to appending
a new term to the energy function.

The whole optimization framework is extended from that
of [SA07]. An initial guess is obtained by solving (5).
Then rotation matrices are computed by using SVD, and are
plugged into the righthand side of (5) based on the derivative
of (3). The two procedures are alternately performed until
convergence. This approach computes a natural rotation for
each vertex and approximately preserves the edge length and
the volume. In addition, the computation complexity of (5)

is similar to that of (2) since (5) only appends l rows and
columns. Because the skeleton is generally 1D, l is much
smaller than the number of surface vertices. Thus the new
system does not significantly decrease the efficiency.

3. Experiments and discussions

The C++ implementation was run on a Intel Core2 Quad
2.40GHz CPU with 8G RAM. Fig. 2 compares the linear
LSE, ARAP surface modeling and our method. The cac-
tus model (620 vertices, 1,236 polygons) is a challenging
test case due to its long protruding features. With enough it-
erations, ARAP surface modeling can recover rotations for
these features. However, when rotations are large, the bent
volume is shrunk. Skeleton constraints can alleviate this
problem. The regions marked by black boxes show the vol-
ume differences using two methods. Fig. 3 compares ARAP
surface modeling with our method on a horse model (2,482
vertices, 4,960 polygons). Using our method, the volume of
the main body is mostly preserved. More results are avail-
able online.

Tab. 1 shows the relative root mean square errors of edge
lengths and volume magnitudes. As expected, the skeleton
based method performs much better in terms of volume
preservation. It also shows the calculation time for each iter-
ation of different methods. Our method only increases pro-
cessing time by about 3% compared to ARAP surface mod-
eling. Generally, it achieves real time performance for ob-
jects with 5k vertices and 3 iterations.

Limitations also exist. Self-intersection may happen, so
the cross sections may cross, which makes the model less
stable. Thus mechanism to prevent self-intersection is nec-
essary. Robust skeleton generation for complex models is
also challenging. Currently only one skeleton is considered.
Mesh contraction [ATC∗08] can be employed to generate
skeletons with branches.

To summarize, we proposed an approach to approxi-
mately preserve the volume without breaking the manifold-
ness of traditional ARAP or increasing the computational
complexity. Our method is easy-to-implement and may be
useful to systems relying on ARAP techniques.
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Figure 2: Dancing cactus. (a) original model, (b) linear LSE, (c) ARAP surface modeling (100 iterations), (d) using skeleton
information with ARAP method (100 iterations), (e) skeleton edges and wire frames of (d). The deformations are achieved by
anchoring the bottom and translating the top. The black boxes show volume differences between traditional ARAP surface
modeling and skeleton based method. Note that only translations are involved.

Figure 3: Running horse. (a) original model with skeleton edges displayed, (b) ARAP surface modeling (3 iterations), (c) using
skeleton information with ARAP method (3 iterations), (d) skeleton edges and wire frames of (c). The deformations are achieved
by anchoring the front legs and translating the rear legs.
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