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Figure 1: The detailed structure of T-pose garment predictor. The
architecture primarily consists of Convolutional Blocks (C-Block)
and Deconvolutional Blocks (D-Block), with a LeakyReLU coeffi-
cient uniformly set at 0.2.

Appendix A: Network architecture

Figure 1 depicts the detailed architecture of the T-pose garment
predictor. This architecture is inspired by the "SilNet" model from
[YLG21]. Instead of predicting the combined silhouette of body
and clothing at the target pose as they did, we focus on predict-
ing the T-pose garment image G’. The information obtained from
concatenating the P° and PG’ of Image I° is passed through the

C-Block, and the same process applies to the P' image. As the in-
formation from these two C-Blocks integrates and passes through
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Figure 2: The detailed structure of the sewing pattern parameter
predictor.

the D-Block, information about the T-pose is conveyed through a
skip connection approach, thereby assisting the learning of clothing
in T-pose.

Figure 2 presents the detailed architecture of the sewing pattern
parameter predictor. To predict the parameters S, which consist of
fewer than 10 parameters from high-dimensional images, a lighter
feature that can effectively encapsulate image information is
required. We initially train a SegNet [BKC17], an encoder-decoder
architecture composed of convolutional layers. Subsequently,
employing the learned filters, we decrease the dimension of G’
via SegNetDown blocks (2,3). Finally, we can predict the sewing
pattern parameters S through a Multilayer Perceptron (MLP)
process.
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