
EUROGRAPHICS 2024/ P. Charalambous and R. Hu Short Paper

Neural Moment Transparency

G. Tsopouridis1 and A. A. Vasilakis2,3 and I. Fudos1

1Department of Computer Science and Engineering, University of Ioannina, Greece
2Department of Informatics, Athens University of Economics and Business, Greece

3Phasmatic, Greece

DFA MB NMT DFA MB NMT

0.15 0.22 0.100.056 0.065 0.042

0.74 1.32 0.371.20 1.32 1.13

Figure 1: Our approach qualitatively outperforms the competing methods according to the FLIP (top right) and MSE (x10−4, bottom right),
achieving better quality results in scenes with varying depth complexity D, and opacity a. Left: D = 52, a = 0.15, Right: D = 31, a = 0.3.

Abstract
We have developed a machine learning approach to efficiently compute per-fragment transmittance, using transmittance com-
posed and accumulated with moment statistics, on a fragment shader. Our approach excels in achieving superior visual accuracy
for computing order-independent transparency (OIT) in scenes with high depth complexity when compared to prior art.

CCS Concepts
• Computing methodologies → Neural networks; Rasterization; Visibility;

1. Introduction

Order Independent Transparency (OIT) is a widely used technique
in computer graphics that enables the rendering of transparent ob-
jects in a scene while maintaining the correct light transmittance
process [Wym16]. OIT techniques aim to solve this issue by en-
suring that the correct ordering of transparent fragment samples
is maintained [VVP20], even when the objects intersect with each
other. Specifically, OIT is derived by

(i) sorting all n fragments f of a pixel p by their depth z:
[fn, fn−1, . . . , f1], so that zn ≤ zn−1 ≤ ·· · ≤ z1.

(ii) computing the pixel color Cp =C f (n) by the following recursive
formula (also known as over compositing operator [PD84]):

C f (i) =

{
Cbg i = 0
aiCi +(1−ai)C f (i−1) i = 1, . . . ,n

(1)

where Cbg is the background color, Ci and ai are the color and
opacity of fragment fi and C f (i) is the color in front of fragment
fi. Therefore, C f (n) is the color of pixel p.

Equation 1 can be rewritten in terms of the per fragment trans-
mittance function T (i) as follows:

Cp =CbgT (0)+
n

∑
i=1

aiCiT (i), T (i) =
n

∏
k=i+1

(1−ak) (2)

The first step requires storing all fragment information in a per
pixel buffer and then sorting all fragments according to their depth
value. This rendering pipeline is known as A-buffer [YHGT10]
and is time and memory demanding [VVP20]. To approximate OIT
with interactive performance and reasonable memory requirements
several approaches have been used that extract per pixel informa-
tion by blending information from all fragments in two or more
rendering passes [Wym16].

In this paper we use the moment-based pipeline introduced by
[MKKP18; Sha18], where an additive blending of power moments
of absorbance is stored in a first pass followed by a second pass
for the reconstruction of the per fragment transmittance. In our
method, we replace the second pass with a pre-trained neural net-

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/egs.20241029 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/egs.20241029

2 of 4 Grigoris Tsopouridis & Andreas-Alexandros Vasilakis & Ioannis Fudos / NMT

work that computes the transmittance based on input parameters
such as the absorbance power moments, the number of fragments,
and the normalized fragment depth. Our approach offers a 20%
to 50% improvement in accuracy compared to power moments,
with the trade-off of a slight performance overhead (around 15%).
Our method is applicable to other absorbance/transmittance appli-
cations in the field of computer graphics.

2. Related Work

Blended transparency rendering. Real-time 3D applications,
such as games, require satisfactory transparency results, all
while adhering to stringent constraints on computation time
costs [VVP20]. Blended OIT methods focus on portability and
speed by adjusting the order-dependant over compositing opera-
tor [PD84] so that its arguments commute. Weighted-sum alpha
blending [Mes07] and Weighted-average alpha blending [BM08]
were the first to simplify the blending formulation. However, both
methods come with poor transparency output on scenes with high
opacity values. Weighted-blended alpha blending [MB13] color-
weighted the operator to include depth-related information. The
weights for each fragment are computed from a monotonic decreas-
ing function. In general, this is the fastest way to convincingly ap-
proximate OIT, if the weight function is carefully tuned to match
the scene’s transparent content well.

Moment transparency rendering. [Sha18; MKKP18] is an inno-
vative approach to real-time transparency rendering without rely-
ing on empirically determined weights. This approach uses mo-
ments, specifically a series of depth powers, to approximate the
transmittance function with high visual quality. An advantage of
using moments is that they are filterable, enabling efficient render-
ing at lower resolution, and facilitating reconstruction at a higher
one. Nevertheless, the accuracy of the approximation is intricately
linked to the type and quantity of moments employed. Utilizing a
smaller number of moments leads to quicker performance but at
the expense of accuracy. While, opting for a greater number of mo-
ments impedes performance and further escalates memory storage.

Deep transparency rendering. Neural networks have been used
for correctly compositing transparent surfaces [TFV22; TVF24].
While these methods compute the overall OIT color on a per-pixel
basis, our method explores a per-fragment moment-based transmit-
tance inference step which leads to improved visual results.

3. Neural Moment Transparency

We utilize a neural network to directly calculate the transmittance
for OIT on a per-fragment basis. Instead of reconstructing transmit-
tance from moments as described in [MKKP18], we employ power
moments to represent the transmittance of each fragment. These
power moments, along with additional per-pixel information, serve
as input features for our neural network, allowing us to enhance
the transmittance approximation. As shown in Figure 2, we render
transparent geometry twice: (i) first, to compute the stored transmit-
tance using a moment function of all pixels (Moment Calculation)
and other per-pixel statistics, and (ii) second, to estimate transmit-
tance. Finally, we blend the color of all transparent surfaces (Trans-
mittance Estimation).

Transmittance
Estimation

Color
Calculation

Geometry Pass Full-screen Pass

Moment
Calculation

Figure 2: Rendering flow diagram of our method.

According to Equation 2, the transmittance T of each fragment f
at depth z f can be expressed as:

T (z f) =
n

∏
i= f+1

(1−ai) (3)

To avoid explicit fragment ordering, moments are transformed to
the log space, allowing alpha composition (Eq. 1) to be treated as an
additive process. By doing so, the absorbance grows monotonically
with the depth z f and can be interpreted as cumulative distribution
function of the finite measure. This allows for a compact represen-
tation based on the statistical moment theory. Thus, absorbance A
[MKKP18] is defined as:

A(z f) =−ln(T (z f)) =
n

∑
i= f+1

−ln(1−ai) (4)

We choose four power moments b(z) = (1,z,z2,z3,z4) as our mo-
ment generating function [MKKP18], allowing us to additively
store each pixel transmittance as:

T (b) =
n

∑
i=1

−ln(1−ai)∗b(zi), zi ∈ [−1,1] (5)

The zeroth moment b0 = ∑
n
i=1−ln(1 − ai), stores the total ab-

sorbance, from which we can derive the total transmittance
(exp(−b0)) of each pixel, and is used to blend the transparent sur-
faces with the background color Cbg.

We use the stored absorbance (Eq. 5) as an input to our neural
network, along with the other input features (Sec. 3.1), to directly
infer the per-fragment transmittance tpr and finally the per-pixel
blended color is computed by:

Cb =
n

∑
i=1

ai ∗Ci ∗ tpr(i) (6)

With ai, Ci, tpr(i), being the opacity, color and predicted transmit-
tance of each fragment respectively. Finally, we compute the final
color Cp by normalizing similarly to the original paper [MKKP18]:

Cp =
1− exp(−b0)

∑
n
i=1 ai ∗ tpr(i)

Cb + exp(−b0)Cbg (7)

3.1. Network Architecture and Feature Selection

We have selected a compact fully connected multilayer perceptron
to predict a per-fragment transmittance, given seven float input fea-
tures (Fig. 3). Given the nature of the task, requiring a fast real-time
performance, we require a highly compact neural network architec-
ture as the inference is executed on a per-fragment basis. The neural
network is composed of an input, an output, and two hidden layers
(32 and 16 neurons) that use ReLU activation function. The output

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

Grigoris Tsopouridis & Andreas-Alexandros Vasilakis & Ioannis Fudos / NMT 3 of 4

. . .
. . .

. . .
. . .

Per-Fragment
Input Features

Hidden Layer
(32 neurons)

Hidden Layer
(16 neurons)

Output
(Transmittance)

f1 f7. . .

Figure 3: A visualization of our neural network that maps the input
features f of each fragment into a transmittance.

layer returns a float value tp ∈ [0,1] that represents the predicted
fragment transmittance, using the sigmoid activation function. The
neural network expects the following 7 per-fragment float features
as input:

• Fragment depth (z) relative to maximum (pM) and minimum
(pm) fragment pixel depths: d = (ez − epm)/(epM − epm).

• Total number of pixel fragments.
• Accumulated pixel absorbance T (b0).
• Moment-based transmittance accumulated for each of the four

generating functions (b1,b2,b3,b4).

The input features, including power moments and relative frag-
ment depths, offer detailed depth and transmittance information
throughout the pixel space. This enhances the ability of the neu-
ral net to effectively map these inputs to transmittance values. The
normalization of all depth inputs to [0,1] enhances the generaliza-
tion across various scene configurations, particularly in scenarios
with closely aligned depth values. The total number of fragments
and accumulated absorbance guide the distribution of transmit-
tance among individual fragments.

Our method aims to enhance visual quality without sacrificing
real-time performance. To achieve this, we use per-fragment infer-
ences and employ a compact neural network architecture for real-
time processing in complex scenes.

3.2. Training Dataset

Our neural network underwent supervised learning, where per-
fragment input features were mapped to transmittance values. We
created a randomly generated synthetic training dataset, incorpo-
rating diverse scenarios by generating random pixels with vary-
ing numbers of fragments (ranging from 2 to 32), fragment depth
ranges (0.3 to 1.0), and values (0.1 to 0.5). The precise transmit-
tance (training target) was computed using Equation 1.

To construct a robust synthetic training dataset we created 250K
pairs of per-fragment inputs and the corresponding target per-
fragment exact transmittance values. This dataset encompasses a
wide range of inputs, ensuring that our neural network can general-
ize effectively across various scene configurations. The inclusion of
varying depth and opacity complexities is crucial for the networks
ability to accurately determine transmittance values. For training,
Mean-Squared Error (MSE) is used as a loss function and Adam
with a learning rate of 0.001 as the optimizer. We have trained our
network for 1000 epochs using a batch size of 8192 using Tensor-
Flow in around three hours.

4. Implementation

Our method requires two geometry passes and a fullscreen pass
(Fig. 2), (i) a geometry pass for Moment Calculation, that com-
putes and stores pixel transmittance using four power moments, to-
tal absorbance (b0), and min/max pixel depths, (ii) a geometry pass
Transmittance Estimation that uses the input features and computes
the per-fragment transmittance using the neural network, and (iii) a
full-screen pass for Color Calculation, that computes the final OIT
color (Eq. 7). Our method utilizes four textures:

• a 32-bit float RGBA texture to store color multiplied by its trans-
mittance and opacity.

• a 32-bit float RGBA texture to accumulate moments.
• a 32-bit float RG texture to accumulate the total absorbance (b0)

and the normalization value.
• a 16-bit float RG texture to store the minimum and maximum

per pixel depths.

For a comprehensive experimental evaluation of Neural Mo-
ment Transparency (NMT) (Sec. 5), we implemented both
Moment-Based Order-Independent Transparency (MB) [Sha18;
MKKP18] and Deep and Fast Order-Independent Transparency
(DFA) [TVF24]. Our approach demonstrates comparable memory
requirements (352 bits per-pixel), which is in line with compet-
ing methods (DFA: 352 bits per pixel, MB: 320 bits per pixel).
Despite this, our method showcases superior visual effects (Fig.
4) with respect to ground-truth images produced by an A-buffer
(AB) [YHGT10] while maintaining real-time performance (Tab. 1).
All methods were implemented in OpenGL 4.6, using interlocks
and atomic operations where needed, with similar texture sizes of
32-bit floats. Shader source code of this work is available online. †

5. Experimental Evaluation

We present an experimental evaluation of NMT as compared to
DFA [TVF24], and MB [MKKP18; Sha18] with regards to per-
formance and image quality. We have performed experiments on
several scenes, with varying depth complexity D (maximum per-
pixel fragments) and opacity using a 1920× 1080 viewport for all
experiments using an NVIDIA RTX 2080 Super GPU.

As our method predicts a per-fragment transmittance, it is scene
independent and it is expected to work in all contexts. In general,
our method outperforms the competing methods in terms of quality
while maintaining real-time performance.

Quality. Our method provides the best image quality in terms of
FLIP [ANA*20] mean error compared to the aforementioned com-

peting methods (Fig. 1, 4). MB produces the lowest quality im-
ages, which could be attributed to its transmittance reconstruction
inaccuracies. We used four power moments as our test scenario,
however several variants (number of power moments, trigonomet-
ric moments) could be used to further improve visual quality with
tradeoffs in performance and memory requirements. DFA further
improves image quality due to its ability to directly approximate
pixel RGB color, using input features that cover the entire pixel
depth and provide color information. It also uses the exact color

† https://github.com/gtsopus/NMT

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

4 of 4 Grigoris Tsopouridis & Andreas-Alexandros Vasilakis & Ioannis Fudos / NMT

Figure 4: Based on FLIP (top right) and MSE (x10−4, bottom right), our method achieves better visual quality, by improving transmittance
approximation, in scenes with varying depth complexity D and opacity a. Left: D = 171, a = 0.2, Right: D = 24, a = 0.3.

of the two closest fragments to improve image quality. Finally, our
NMT outperformed the aforementioned approaches due to its abil-
ity to better infer fragment transmittance using a neural network.
The neural network input features provide information regarding
transmittance/absorbance (moments), and fragment depth allowing
the neural network to detect the space positioning of each fragment
and assign the appropriate transmittance value.

Performance. As illustrated in Table 1, our method achieves real-
time performance in scenes of varying depth complexity, with only
a minor performance overhead that depends on the number of frag-
ments and the inference time of the neural network (Fig. 2).

Table 1: NMT exhibits a slightly decreased performance in scenes
with depth complexity D. Moment Calculation pass timings in
parentheses. Timings are in ms.

Scene (D) AB DFA MB NMT
Sibenik (31) 15.0 3.0 4.3 5.2 (3.9)
Engine (52) 5.3 1.3 2.0 2.3 (1.3)
Hair (172) 17.2 3.3 6.7 8.0 (6.4)
Smoke (24) 7.9 2.6 3.9 4.6 (3.5)

6. Conclusions

Our method employs a neural network to directly infer the transmit-
tance of each pixel allowing us to effectively render approximate
OIT in real time. Our method produces superior results compared
to the approximate MB method [MKKP18] utilizing four power
moments. This is attributed to our neural network-based approach,
which numerically refines the final result by incorporating addi-
tional features. As a future research direction, we aim to investi-
gate the behavior of a variety of other moment generating func-
tions, such as trigonometric moments, to further increase the visual
quality with a potentially small overhead in computation time and
memory. Finally, we plan to leverage neural networks to address the
rendering challenges associated with various effects (e.g., shadow
mapping).

References
[ANA*20] ANDERSSON, PONTUS, NILSSON, JIM, AKENINE-MÖLLER,

TOMAS, et al. “ FLIP: A Difference Evaluator for Alternating Images”.
Proc. ACM Comput. Graph. Interact. Tech. 3.2 (Aug. 2020). DOI: 10.
1145/3406183 3.

[BM08] BAVOIL, LOUIS and MYERS, KEVIN. “Order Independent Trans-
parency with Dual Depth Peeling”. 2008 2.

[MB13] MCGUIRE, MORGAN and BAVOIL, LOUIS. “Weighted Blended
Order-Independent Transparency”. JCGT 2.2 (Dec. 2013), 122–141.
URL: http://jcgt.org/published/0002/02/09/ 2.

[Mes07] MESHKIN, HOUMAN. “Sort-independent Alpha Blending”. GDC
Talk 2.4 (2007) 2.

[MKKP18] MÜNSTERMANN, CEDRICK, KRUMPEN, STEFAN, KLEIN,
REINHARD, and PETERS, CHRISTOPH. “Moment-Based Order-
Independent Transparency”. Proc. ACM Comput. Graph. Interact. Tech.
1.1 (July 2018). DOI: 10.1145/3203206 1–4.

[PD84] PORTER, THOMAS and DUFF, TOM. “Compositing Digital Im-
ages”. Proceedings of the 11th Annual Conference on Computer Graph-
ics and Interactive Techniques. SIGGRAPH ’84. New York, NY, USA:
ACM, 1984, 253–259. DOI: 10.1145/800031.808606 1, 2.

[Sha18] SHARPE, BRIAN. “Moment Transparency”. High-Performance
Graphics. Vancouver, British Columbia, Canada: ACM, 2018, 1–4. DOI:
10.1145/3231578.3231585 1–3.

[TFV22] TSOPOURIDIS, GRIGORIS, FUDOS, IOANNIS, and VASILAKIS,
ANDREAS A. “Deep Hybrid Order-Independent Transparency”. The Vi-
sual Computer 38.9 (2022), 3289–3300. DOI: 10.1007/s00371-
022-02562-7 2.

[TVF24] TSOPOURIDIS, GRIGORIS, VASILAKIS, ANDREAS A., and FU-
DOS, IOANNIS. “Deep and Fast Approximate Order Independent Trans-
parency”. Computer Graphics Forum (2024), e15071. DOI: 10.1111/
cgf.15071 2, 3.

[VVP20] VASILAKIS, ANDREAS A., VARDIS, KOSTAS, and PAPAIOAN-
NOU, GEORGIOS. “A Survey of Multifragment Rendering”. Computer
Graphics Forum 39.2 (2020), 623–642. DOI: 10 . 1111 / cgf .
14019 1, 2.

[Wym16] WYMAN, CHRIS. “Exploring and Expanding the Continuum of
OIT Algorithms”. Proceedings of High Performance Graphics. HPG
’16. Dublin, Ireland: Eurographics Association, 2016, 1–11. DOI: 10.
2312/hpg.20161187 1.

[YHGT10] YANG, JASON C., HENSLEY, JUSTIN, GRÜN, HOLGER, and
THIBIEROZ, NICOLAS. “Real-Time Concurrent Linked List Construc-
tion on the GPU”. Computer Graphics Forum 29.4 (2010), 1297–1304.
DOI: 10.1111/j.1467-8659.2010.01725.x 1, 3.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1145/3406183
https://doi.org/10.1145/3406183
http://jcgt.org/published/0002/02/09/
https://doi.org/10.1145/3203206
https://doi.org/10.1145/800031.808606
https://doi.org/10.1145/3231578.3231585
https://doi.org/10.1007/s00371-022-02562-7
https://doi.org/10.1007/s00371-022-02562-7
https://doi.org/10.1111/cgf.15071
https://doi.org/10.1111/cgf.15071
https://doi.org/10.1111/cgf.14019
https://doi.org/10.1111/cgf.14019
https://doi.org/10.2312/hpg.20161187
https://doi.org/10.2312/hpg.20161187
https://doi.org/10.1111/j.1467-8659.2010.01725.x

