EUROGRAPHICS 2024/ P. Charalambous and R. Hu

Short Paper

A Highly Adaptable and Flexible Rendering Engine by Minimum
API Bindings

Taejoon Kim

Electronics and Telecommunications Research Institute (ETRI), South Korea

A A _ Commands (according to User APIs) T TTTTTTTTTTT
from Engine import SDK as Engine Python .
[1 Engine
'
renderer = Engine.loadPlugIn({ 'name': 'PathTracer'}) s »| “loadPlugIn -name PathTracer”, !
g‘ “create -type node”, :
scene = Engine.create({ 'type’: 'node'}) < "load -fileName sample.scene” 1
H “prender -scene 2" ! PathTracer
s . . A —> ! (Plug-in)
scene.load({ 'fileName': ‘sample.scene'}) £] |
>
a l
renderer.render({ 'scene': scene, -
*numSamplesPerPixel’: 128})] invokelusingiSvetem/anl
— “ -l0bject* createNode(void) {
= require(H .
: 1 return new Node()
= Engine.loadPlugIn(Saxascupt - I 3 '
S \ ['
name: 'H ‘= 9o
. _ c 5 '
= .create({ type: o g] Object* loadPlugIn(
.load({ fileNam >7T 5 = const std::string& name) {
- T < '
.rende - - ' PlugIn* plugIn = new PlugIn();
]
numSampl . Mitsuba
P s £ // find a plug-in by name and load. 5
! (Plug-in)
1 /] ...
'
j return plugln; i
' }
]
]

C#, Matlab, ...]—/

Figure 1: The proposed rendering engine is designed to be easily embedded in various development environments. An adaptor for each
environment converts undefined functions into corresponding command strings. The engine then parses the command strings and executes
proper procedure using the System API. The upper right image shows the rendering result using a simple path tracer, while the bottom right
image shows the rendering result of another scene using Mitsuba render plugin.

Abstract

This paper presents a method for embedding a rendering engine into different development environments with minimal API
bindings. The method separates the engine interfaces into two levels: System APIs and User APIs. System APIs are the low-
level functions that enable communication between the engine and the user environment, while User APIs are the high-level
functions that provide rendering and beyond rendering functionalities to the user. By minimizing the number of System APIs,
the method simplifies the adaptation of the engine to various languages and platforms. Its applicability and flexibility are
demonstrated by the successful embedding the engine in multiple environments, including C/C++, C#, Python, Javascript, and
Matlab. It also demonstrates its versatility in diverse forms such as CLI renderers, Web GUI framework-based renderers, remote
renderers, physical simulations, and more, while also enabling the easy adoption of other rendering algorithms to the engine.

CCS Concepts
* Computing methodologies — Rendering;

1. Introduction

Advances in rendering engines and their APIs enable users to visu-
alize or render scenes easily without requiring a high level of ren-
dering expertise. Recently, some monolithic engines such as Unreal
Engine, Unity, Blender, and Autodesk Maya/3ds Max have been

© 2024 The Authors.

Proceedings published by Eurographics - The European Association for Computer Graphics.

This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/egs.20241027

widely used in games, films, and animation. Each provides ways
for users to describe scenes so that the users can work within the
engines’ proprietary software, typically called an Editor. Another
type of engines [PJH16, NDVZJ19] offers APIs that allow users to
embed the engine into their own applications.

delivered by

EG EUROGRAPHICS

www.eg.org

DIGITAL LIBRARY
diglib.eg.org

https://orcid.org/0000-0002-3415-2104
https://doi.org/10.2312/egs.20241027

2of 4 Taejoon Kim / A Highly Adaptable and Flexible Rendering Engine by Minimum API Bindings

Despite the diversity of advances in development environments,
developers are often forced to use only a few, such as C++ or
Python, by the most API-based engines due to the rendering na-
ture; rendering requires numerous APIs. If developers want to
support a specific environment or language that differs from the
engine’s implementation, they must undergo a tedious process
known as binding, which links each API between two environ-
ments. For example, assume there’s an API implemented in C++,
createMesh (...). To call this API from Python, one needs
to create a corresponding function in Python and then somehow
bind this Python function to the C++ implementation. Moreover,
the function parameters should be converted to a format that C++
can handle, and the return value should be converted properly
as well. Depending on the level of API detail, tens to hundreds
of bindings for various APIs (e.g., getMeshPosition(...),
setImageWidth (...)) are typically required for just a sin-
gle environment. To support another environment, such as Node.JS
(Javascript), an additional extensive binding effort is again re-
quired.

Previous Work has shown that, for these reasons, many engines
including Unreal Engine and PBRT [PJH16] only support C/C++,
while some others such as Mitsuba [NDVZJ19] and Blender ad-
ditionally support a few scripting languages for convenient devel-
opment. This kind of trend (restrictions in using a rendering en-
gine) tends to divide the way of using rendering engines into only
two manners; users either operate within the provided engine soft-
ware (the Editor) or develop within a limited range of environments
or languages. Recently, Khronos ANARI [SGA*22] was released,
making it easy to render scenes with a few dozen high-level APIs.
However, it is not yet ready to be used in a wide range of devel-
opment environments because it requires support from the respec-
tive communities. The proposed method allows ANARI to be used
in a variety of environments with a single integration. Also, the
use of Foreign Function Interface (FFI) related tools might be con-
sidered. SWIG [Bea96] automatically generates binding codes be-
tween C/C++ and various kinds of programming languages. How-
ever, the code generation and redistribution might be necessary if
any of the APIs are changed or added. Networking protocols such
as REST or gRPC [BZP*22] are also considerable but they have
unnecessary network overhead even if we don’t communicate over
the network.

2. Method

This paper proposes an approach to easily support various devel-
opment environments by reducing the number of API bindings.
The main idea involves organizing the APIs into two levels; Sys-
tem APIs and User APIs.

System APIs are low-level functions that facilitate communica-
tion between different environments. This means that it is neces-
sary to implement as many bindings as the product of the number
of System APIs and the number of environments. User APIs, on
the other hand, are high-level functions that provide rendering and
various functionalities. By integrating these two API levels while
minimizing the number of System APIs, an efficient process can
be established. This process involves configuring all functionalities

using User APIs, which are then requested to the engine via a sin-
gle System API, called a command. The following is an abstract of
the command:

Result + Command(target,command_string)

An User API with its parameters are converted to a string and
given as the command_string. The use of strings has several ad-
vantages: 1) they are accepted by almost all environments, 2) a
string itself can contain various data types, 3) strings are highly
readable, and 4) there are many tools available for generating or
parsing strings.

Followings are some examples of creating a mesh object that
satisfy the User API.

/#* JSON #/ "{ \"command\": \"create\", \"type\": \"mesh\" }";
/% CLI %/ "create -type mesh";

Based on the above approach, the proposed rendering engine
system consists as shown in Fig. 2. The engine basically manages
the engine objects such as meshes, materials, cameras, etc. In ad-
dition, the engine can be extended and customized by a set of plu-
gins. A plugin is a dynamically loadable module (i.e., a shared li-
brary) that implements its own functions such as rendering frames,
importing/exporting 3D models, handling scripting languages, de-
forming geometries, and so on. More and detailed examples of the
plugins are discussed in Sec.2.3.

] . 1
Engine
Application 1 1
1]
1 1
Objects
+»| Mesh#1 Mesh #2 Camera #1 1 l:l)
Ci e
omman-) 1 ! [pugns
1]
\——————+»| Renderer 10 Scripting 1
1 1
\ 7

Figure 2: This figure illustrates how the application commands
are applied to the engine. The yellow boxes represent engine ob-
Jjects and the green boxes represent plugins. Commands are ap-
plied directly to the engine or passed to engine objects or plugins,
depending on the specified target.

Although the system proposed so far may make the rendering
engine appear flexible, there are significant issues when it comes to
applying it to actual applications. These issues can be categorized
into problems from the user’s perspective and those from the devel-
oper’s perspective. From a user perspective, it can be quite cumber-
some to create strings for the desired functionality. For example,
instead of using a command with a string to change a property of a
camera object, as shown below

Command (camera, "setAspect -aspect 1.5", ...); |

users would prefer to call it in the form of a class such as:

camera.setAspect ({ aspect: 1.5 }); |

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

Taejoon Kim / A Highly Adaptable and Flexible Rendering Engine by Minimum API Bindings 3of 4

that is more productive. To accomplish this, the presented adaptors
for each environment provide methods by using dynamic properties
(Sec.2.1). On the other hand, from a developer’s point of view, the
extra effort is required to interpret or parse the requested strings and
map them to the corresponding functions. To solve this problem,
this paper proposes to use an automation tool (Sec.2.2).

In summary, a user sets up a request using a User API, and an
adaptor then converts it to a string before forwarding it to the engine
through single System API, Command (). The engine then parses
the command strings and executes proper procedure (Fig. 1).

2.1. Adaptors

Fortunately, many modern high-level languages support some form
of dynamic properties in their own way. A dynamic property in-
tercepts accesses to any property or invocations of any method,
and then allows you to process additional actions. By using these
features, an adaptor automatically converts each property access
and method invocations to command strings. Here is a Javascript
code example that implements this using Proxy. Other examples
(Python, C#, Matlab) can be found in the supplementary material.

const object = new Proxy(instance, {
get: function (target, property) {
return function (args) {
const commandString = JSON.stringify (Object.assign ({
command: property}, args));
// Invoke a System API.
return Command (target.ID, commandString);
IRRRN

In addition to supporting dynamic properties, an adaptor con-
verts pointer values into usable forms. Specifically, a pointer of an
array in the engine is converted to typed array in the user’s environ-
ment. Also, a function pointer is able to be converted to a callback
function or a lambda function.

Because of the simplicity of the System APIs, developing an
adaptor might take less than a week in practice if he or she has
enough experience with the environment. In the case of Python,
the source code of an unoptimized adaptor has around 100 lines for
core implementations and less than 500 lines total; most of the lines
are for typical type mappings.

2.2. API Designer

In practice, defining an User API involves some systematic tasks.
We need to write a function that implements an User API, make
a parser that identifies whether a given command string is for the
API or not and parses other parameters, and write a code to call
the working function inside the Command () function. To reduce
these cumbersome processes, this paper proposes an automated tool
named API Designer.

When an engine developer or a plugin developer defines an API
name, parameters, and descriptions for the API using API De-
signer, the tool generates a skeleton code for the API implemen-
tation with documentation comments, and codes to link the System
API (Please see the accompanying video).

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

2.3. Plugins

A plugin is a module that can be loaded into the proposed en-
gine at runtime. Any module that implements the Command ()
and exports the API so that the rendering engine can get the ad-
dress of the function (using dlsym on POSIX, GetProcAddress on
Windows) could be a plugin. Unlike plugins in other systems that
are tightly bound to the main engine, the proposed method is much
more open to the plugin form. Mitsuba2 [NDVZJ19], for example,
has a plugin-based architecture and each of the shapes, materials,
and integrators is a plugin module. In order to add another shape as
a plugin, it should implement every interfaces with exact parameter
types defined by Mitsuba2. Moreover, it is not straightforward that
how to support other kinds of plugins.

As discussed earlier, interpreting a request, i.e., parsing a com-
mand string has a performance overhead. To see the amount of
overhead, an experiment that invokes the simplest function, get-
ting the object ID, had been performed. When a plugin exports a
separate function (such as a System API) to get an object ID, it
takes less than 1 ms for 100,000 times invocations on an Intel i9
CPU @ 3.60GHz machine. But it takes about 120 ms for 100,000
times invocations via the Command () API. Most of the time is
spent for parsing the result string. As we can see, it might not be a
good choice to make plugins for each engine object which is what
Mitsuba2 does. Instead, we could focus on high-level functions for
a plugin and make some custom objects (if necessary) inside the
plugin module. The ray-intersection test for a mesh in ray tracing
has to be performed incredibly often which might not be appropri-
ate for our API, but for the rendering process which is done usually
only once per frame.

3. Applications and Results

Due to high flexibility based on unified command interface, the
proposed engine significantly increases the productivity of devel-
oping various types of applications. In this paper, the utility of the
proposed method is evaluated by directly applying it to various ap-
plications (Please see the accompanying video and supplementary
material which has more diverse applications.).

3.1. GUI using web frameworks

Recently, one of the most powerful and popular development
method of GUI is to use web frameworks. Front-end frameworks
such as React and Vue.JS and corresponding component libraries
(UI elements such as buttons, text fields, ...) allow developers to
develop high-quality GUIs with high productivity. These frame-
works can be used not only in web browsers but also in desk-
top applications using web-to-desktop-frameworks such as Elec-
tron (combination of the Chromium browser engine and Node.JS).
Since the proposed engine works with Javascript which is a script-
ing language in most web environments, these advantages can be
actively utilized. Please note that the commands of the engine run
natively, the performance within single command is not a concern.

3.2. Embedding other Renderers

Although a rendering plugin can have its own rendering algorithm,
it would be very useful if we are able to adopt existing renderers.

40of4 Taejoon Kim / A Highly Adaptable and Flexible Rendering Engine by Minimum API Bindings

The following well modularized renderers are good examples to
embed. In practice, it only takes around or less than a week to make
a renderer as a plugin if it is already familiar with. Most of the
time is spent converting scene objects such as geometries, cameras,
lights and materials. For materials, since it is beyond the scope of
this paper, only a part of Disney’s principled material [MHH™12]
is used, but extending it to support other types is trivial.

PBRTv3: The PBRT rendering pipeline automatically saves the
rendered film to only a file after all tasks have been completed,
but this workflow is not suitable for our API. To address this issue,
the original source code is modified to save the film into a memory
buffer. Also, in order to directly retrieve scene objects from an im-
ported scene, additional code is required because the PBRT is not
designed for this purpose.

Mitsuba2: Thanks to its well-defined software architecture, the
original source is used without any modification. Obtaining scene
objects from an imported scene or objects attributes can be done
using traverse () orto_string().

3.3. Remote and distributed rendering

By designing a special plugin, named a remote plugin, the remote
rendering could be achieved without any additional work; just load
a rendering plugin as a remote plugin. The remote plugin acts as a
bridge, forwarding any request from the user to the remote server,
and also passing the results back to the user. This method is useful
when the plugin is not able to run on the local machine due to OS
mismatch or lack of required hardware, but can run on the remote
server. This feature enables the distributed rendering easy. The only
thing to consider is how to distribute the frames (or tiles in a frame)
to multiple rendering servers.

3.4. Physical simulation

A physical simulation can be achieved by using a plugin that pro-
vides the simulation functionalities. The plugin is responsible for
creating/managing the physical objects, handling the physical pa-
rameters, handling the interactions between the user and the physi-
cal objects and deforming the geometries over time. Then the main
engine simply calls some User APIs to the plugin to perform the
simulation. Similar to the rendering plugins, any kind of implemen-
tation of the physical simulation could be applied and the user could
perform the simulation in the same manner if all plugins share same
APIs. In this paper, a particle-based simulation [MMCK14] has
been successfully tested.

3.5. Automatic unit test

One of the advantages of managing APIs directly is that it makes
easy to automate unit tests. Moreover, since the engine can run in
a variety of environments, the testing tools also have a wide vari-
ety of choices. In this paper, Mocha, a Javascript testing framework
running on Node.JS, has been chosen. The test framework reads
predefined test cases (arguments and expected outputs) for each
User API and then checks whether the running outputs match to
the expected outputs or not.

4. Conclusion and Future Work

In this paper, an approach is proposed to easily embed the render-
ing engine in various environments by separating the engine inter-
faces into user APIs (providing semantic functions to users) and
system APIs (for syntactic communication between different en-
vironments where the engine is implemented and the engine will
be used) and then minimizing the number of system APIs. This is
much more productive than the bindings of other rendering engines
which have usually hundreds of APIs. By applying the proposed
approach to plugins as well, we are able to develop a plugin system
with virtually unlimited functionality, thereby significantly enhanc-
ing the engine’s adaptability and flexibility. As a result, many kinds
of applications could be easily created.

The source code or web sandbox interface associated with this
work is planned to be released in the future. This will ensure that the
code is comprehensive, well documented, and thoroughly tested,
to best serve the research community. In addition, a detailed per-
formance analysis with techniques related to FFI, such as SWIG
[Bea96] and gRPC [BZP*22], will be conducted.

Acknowledgment

3D scenes of the Victorian style house, bathroom, hotel in
San Miguel (in the accompanying video) are courtesy of
MrChimp2313, Mareck and Guillermo M. Leal Llaguno respec-
tively. This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP) grant
funded by the Korea government(MSIT) (No. 2021-0-00193, De-
velopment of photorealistic digital human creation and 30fps real-
istic rendering technology)

References

[Bea96] BEAZLEY D. M.: SWIG: an easy to use tool for integrating
scripting languages with C and C++. In Fourth Annual USENIX Tcl/Tk
Workshop 1996, Monterey, California, USA, July 10-13, 1996 (1996),
Diekhans M., Roseman M., (Eds.), USENIX Association. 2, 4

[BZP*22] BOLANOWSKI M., ZAK K., PASZKIEWICZ A., GANZHA M.,
PAPRZYCKI M., SOWINSKI P., LACALLE I., PALAU C. E.: Eficiency
of REST and grpc realizing communication tasks in microservice-based
ecosystems. CoRR abs/2208.00682 (2022). arXiv:2208.00682. 2,
4

[MHH*12] MCAULEY S., HILL S., HOFFMAN N., GOTANDA Y.,
SMITS B. E., BURLEY B., MARTINEZ A.: Practical physically-based
shading in film and game production. In International Conference on
Computer Graphics and Interactive Techniques, SSIGGRAPH 2012, Los
Angeles, California, USA, August 5-9, 2012, Courses (2012), ACM,
pp. 10:1-10:7. 4

[MMCK14] MACKLIN M., MULLER M., CHENTANEZ N., KiM T.:

Unified particle physics for real-time applications. ACM Trans. Graph.
33,4 (2014), 153:1-153:12. 4

[NDVZJ19] NIMIER-DAVID M., VICINI D., ZELTNER T., JAKOB W.:
Mitsuba 2: A retargetable forward and inverse renderer. Transactions on
Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Dec. 2019). 1,2, 3

[PJH16] PHARR M., JAKOB W., HUMPHREYS G.: Physically Based
Rendering: From Theory to Implementation, 3rd ed. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2016. 1, 2

[SGA*22] STONE J. E., GRIFFIN K. S., AMSTUTZ J., DEMARLE
D. E., SHERMAN W. R., GUNTHER J.: Anari: A 3-d rendering api stan-

dard. Computing in Science & Engineering 24, 02 (mar 2022), 7-18.
2

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

http://arxiv.org/abs/2208.00682

