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Abstract
Subdivision surface is a popular technique for geometric modeling. Recently, several parallel implementations have been de-
veloped for Loop subdivision on the GPU. However, these methods are built on complex data structures which complicate the
implementation and affect the performance, especially on the GPU. In this work, we propose to simply use the sparse adjacency
matrix which enables us to implement the Loop subdivision scheme in the most straightforward manner. Our implementation
run entirely on the GPU and achieves high performance in runtime with significantly lower memory consumption than the
state-of-the-art. Through extensive experiments and comparisons, we demonstrate the efficacy and efficiency of our method.

CCS Concepts
• Computing methodologies → Computer graphics; Mesh models;

1. Introduction

Subdivision surfaces are widely used for various engineering and
science applications, among which, Loop subdivision [Loo87] is
one of the most popular subdivision schemes, given the popularity
of triangular meshes in computer graphics. Throughout the last few
decades, subdivision surface has been widely used in 3D modeling
and supported by the major production software packages, among
which OpenSubdiv [Pix] is the most popular tool that offers the
user the ability to dynamically modify the vertex positions of the
mesh. However, in many scenarios, the user often needs a real-time
implementation in order to perform interactive modeling. There-
fore, it has been an important and challenging task to accelerate the
subdivision schemes.

Previous work. Shiue et al. [SJP05] propose to decompose the
base mesh of the subdivision surface into patches, and then in-
dependently refine these patches to the required subdivision level
adaptively. However, this method relies on a proper patch parti-
tion of the base mesh. Moreover, due to floating-point inaccuracies,
the refined edges may differ between neighboring patches. Brain-
erd et al. [BFK∗16] present a method for real-time rendering of
subdivision surfaces by exploiting the bicubic representation using
hardware tessellation. They reduced visual errors by subdividing
the irregular regions. However, in the irregular regions, the subdi-
vision surfaces remain inaccurate. Mlakar et al. [ZSS17] propose
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a GPU-adapted data structure for triangle meshes, which includes
two matrices encoding the connection between vertices, faces and
edges. Built on this data structure, Mlakar et al. [MWS∗20] intro-
duce a parallel implementation of the Catmull-Clark subdivision
scheme, which runs entirely on the GPU and generates subdivision
surface for quad mesh in real-time. They briefly mention that this
method could be extended for Loop subdivision. However, it lacks
discussion on how the specialized linear algebra GPU kernel pro-
grams in their method are generalized from quad meshes to triangu-
lar meshes, in order to achieve similar runtime performance. More
recently, Dupuy and Vanhoey [VD22] proposed another approach
to implement the Loop subdivision scheme using the fully fledged
half-edge data structure, which however, is costly for the GPU as
it contains redundant operators resulting in excessive memory con-
sumption.

Contribution. In this work, we propose to simply use the adja-
cency matrix of the mesh in order to implement the Loop subdi-
vision scheme. Our data structure is straightforward to build and
use and is more compact than the state-of-the-art. With this sim-
ple data-structure, we developed a high-performance parallel im-
plementation of the Loop subdivision scheme running entirely on
the GPU, enabling rendering subdivision surfaces in real-time with
low memory footprint.

2. Method

In the Loop subdivision scheme, the base mesh is iteratively refined
by inserting points on the edges and spliting each triangle into four
new ones. The base mesh in the Loop subdivsion is a triangle mesh.
More specifically,

Base mesh is given byM = ⟨P,F⟩, where P = (x1, · · · ,xn) is the
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vertex list containing the coordinates of all the vertices, i.e., xi =
(xi,yi,zi)

T is the coordinates of the ith vertex, and F = (f1, · · · , fm)
is the face list containing the indices of the three vertices in each
triangular face, with fi = (vi

0,v
i
1,v

i
2)

T being the ith face of the mesh.

When implementing a subdivision scheme, we need to access
the connectivity of the mesh using some mesh data-structure. To
minimize the overhead of constructing and provide efficient access
for the mesh data-structure, we propose to use the sparse adjacency
matrix.

Adjacency matrix. Given a mesh, the adjacency matrix encodes
the vertex-vertex adjacency information, e.g., whether two vertices
are connected, and in case of yes, the index of the edge between the
vertex pair or the face containg this edge can be stored in the mesh.
As a sparse matrix, the adjacency matrix can be stored in a com-
pact format, e.g. the Compressed Sparse Column (CSC) format, in
which the nonzeros of the matrix are ordered by their column in-
dices. Specifically, we encode the sparse adjacency matrix E as a
triplet {columnptr, rowindex, values}, the column indices of the
nonzeros are compressed into columnptr which holds pointers to
the first nonzeros in each column of the matrix, while rowindex
and values contain the row indices and values of all the nonzeros.

In our adjacency matrix, for each edge in the mesh, we store
its index and the two vertices: Ee(vi,v j) is the index of the edge
connecting vi and v j, Everts(vi,v j) is (vi,vk), where vi,v j,vk are
the indices of three vertices on the same triangular face. See the
illustration in Algorithm 1 and Fig 1.
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Figure 1: The adjacency matrix E and face list F of a simple tri-
angular mesh.

2.1. Parallel Loop Subdivision

Each iteration of Loop subdivision consists the following 4 steps.

Adjacency Matrix is constructed in the first step of each subdi-
vision step. The edge number and vertex index in the matrix are
recorded at the same time. The columnptr is easy to compute since
the valences of the new edge points are all equal to 6. Ee is the pre-
fix sum of Evalue, i.e. Ee[n] = ∑

n
i=1 Evalues[i] for each n. More details

are shown in Algorithm 1.

Topology Refinement. Each triangle in the mesh splits into four
new ones, and the inserted edge points can be numbered by the edge
indices offset by the number of vertices before the mesh is subdi-
vided. The index of edge between vi and v j is given by Ee(vi,v j).
Algorithm 2 provides pseudo-code for topology refinement.

Vertex Vertex Update. The coordinates of each vertex after subdi-

Algorithm 1: Construction of the Adjacency Matrix
Input: Mesh face list F, columnptr of E , face number m
Output: Adjacency Matrix E
foreach i ∈ [0,m) do

(v0,v1,v2)←− F[i];
Erowindex[columnptr[v0]]←− v1;
Evalues[columnptr[v0]]←− v0 < v1;
Everts[columnptr[v0]]←− (v0,v2);

end
Ee←− pre f ixSum(Evalues)

Algorithm 2: Topology Refinement
Input: adjacency matrix E , mesh face list F , vertex count n,

face count m
Output: face list of the refined mesh Fo
foreach i ∈ [0,m) do

(v0,v1,v2)←− F [3i+(0 : 2)];
e0←− Ee (v1,v2)+n;
e1←− Ee (v2,v0)+n;
e2←− Ee (v0,v1)+n;
Fo [12i+(0 : 2)] = (v0,e1,e2);
Fo [12i+(3 : 5)] = (v1,e2,e0);
Fo [12i+(6 : 8)] = (v2,e0,e1);
Fo [12i+(9 : 11)] = (e0,e2,e1);

end

vision can be computed from its neighbors,

vi = (1− kβ)vi +β ∑
v j∈Ωi

v j (1)

where Ωi is the set of the vertices in the neighborhood of vi, and

β = 1
k

(
5
8 −

(
3
8 +

1
4 cos 2π

k

)2
)

depends on the valence k. To cal-

culate the vertex position after subdivision, we need the list of ad-
jacent vertices of each vertex, which is a column of the adjacency
matrix E . Hence we can compute the vertex coordinates via vec-
tor summation and scalar multiplication. More details are given in
Algorithm 3.

Algorithm 3: Vertex Vertex Update
Input: adjacency matrix E , vertex list P, vertex number n
Output: Refined vertex list Po
foreach i ∈ [0,n) do

u←− ∑ j∈Ωi
P [ j];

/* Ωi is the neighborhood of P[i], and
their indices can be found between
Eids[Eptr[i]] and Eids[Eptr[i+1]]. */

β←− 1
k

(
5
8 −

(
3
8 +

1
4 cos 2π

k

)2
)

;

Po[i]←− (1− kβ)P [i]+βu;
end

Edge Vertex Insertion. For each edge, a new vertex is inserted at
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the weighted average of four related vertices, all of which are avail-
able in matrix E . Everts(vi,v j) and Everts(v j,vi) are the indices of the
two vertices opposite to the edge connecting vi and v j . Algorithm 4
provides the pseudo-code for computing the edge vertices.

Algorithm 4: Edge Point Calculation
Input: adjacency matrix E , vertex list P, edge number l,

vertex number n
Output: Refined vertex list Po
foreach i ∈ [0, l) do

v1←− Eids[i];
(v2,v3)←− Everts[i];
e←− Ee[i];
if v2 < v1 then

(v2,v4)←− Everts(v1,v2);
Po[e+n]←− 1

8 (3P[v1]+3P[v2]+P[v3]+P[v4]);
end

end

Parallelization. Algorithms 2, 3 and 4 are embarrassingly paral-
lelizable and easy to implement on both CPU and modern GPU. It
is less trivial to implement Algorithm 1 in parallel due to the pre-
fixSum routine involved, yet it is provided by the standard libraries
of C++ and NVIDIA CUDA, which makes our method easy to im-
plement with high performance.

3. Evaluation

We implement our method on the GPU using NVIDIA CUDA and
on the CPU using C++/OpenMP. To ease reproduction, we re-
lease our reference implementation at https://github.com/
USTC-wkc/LoopSubdiv. In this section, we analysis the com-
plexity of our method and compare its performance against the
state-of-the-art. However, for some competing methods, it is dif-
ficult to implement and no public implementation is available. In
particular, Mlakar et al. [MWS∗20] provided a method for GPU
parallel Catmull-Clark subdivision and indicated that it can be ex-
tended to Loop subdivision, however, the implementation details
are unclear and no public implementation is available. Dupuy and
Vanhoey [VD22] propose a method based on the half-edge data-
structure and achieves the-state-of-the-art performance. Therefore,
we compare our method with their implementation in terms of
memory cost and running time. Throughout our experiments, we
use the following hardware configuration: an Intel i9-10900k CPU,
128GB of memory and an NVIDIA RTX3060 with 12GB of mem-
ory.

3.1. Memory Consumption

In addition to the face list F and the vertex list P, our method re-
quires memory for the adjacency matrix E during runtime. The
storage cost of these three parts can be expressed in terms of the
number of faces Fi, number of vertices Vi and number of edges Ei,
where i is the subdivision level. Notice that:

Fi+1 = 4Fi, Vi+1 =Vi +Ei, Ei+1 = 2Ei +3Fi, (2)

we can derive that,
Fn = 4nF0

En = 2nE0 +3 · (22n−1−2n−1)F0

Vn =V0 +(2n−1)E0 +(22n−1−3 ·2n−1 +1)F0

(3)

At subdivision level n, the memory cost (in bytes) involves two
parts, the adjacency matrix En−1 for computation, and face list ar-
ray F and vertex list P for output, whose costs can be estimated as
follows,

memory cost for En−1 : 4 · (5 ·2En−1)≈ 30 ·22n−1F0

memory cost for Fn and Vn : 4 · (3Vn +3Fn)≈ 36 ·22n−1F0.
(4)

Dupuy and Vanhoey [VD22] also provided an estimation of mem-
ory cost (in bytes) for their method:

12 ·
n

∑
i=0

(Fi +Vi)≈ 112 ·22n−1F0. (5)

which means the memory cost of our method is only 60% of theirs.
This is mainly due to that we directly output the face list of the sub-
divided mesh F, instead of the heavy half-edge structure, and the
extra memory cost of our method comes from the adjacency matrix
of the mesh before subdivision (level n−1), which is smaller than
the subdivided mesh (level n). We note that based on our estimation,
55% memory cost in our method is for the subdivided mesh. We
performed several experiments to verify the theoretic memory cost
4, and compared it with the method of Dupuy and Vanhoey [VD22]
in Figure 2.
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Figure 2: The memory cost of subdividing two meshes, Monster-
frogT and BigguyT models, into different levels n = 6,7,8. The
memory costs for computing and outputting the subdivision mesh
are listed separately.

3.2. Runtime Consumption

We also compare the runtime performance of our method with that
of Dupuy and Vanhoey [VD22], whose implementation is kindly
provide by the authors. This comparison is conducted for the run-
ning times with both GPU and CPU implementations. Figure 3 and
Figure 4 show that our method runs about 40% faster. We con-
jecture that this is mainly due to that our implementation has the
following advantages:
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• The neighboring vertices of each vertex are stored together in the
adjacency matrix, which makes it more cache friendly, leading to
higher parallelization efficiency of our method.

• We directly use the face list F to represent the input and output
meshes instead of a more complicated data structure such as the
half-edge, which makes our method more efficient to load and
write the mesh.

Figure 3 and 4 show the running times for different meshes un-
der different subdivision levels. We can see that our method runs in
real-time rate, and can therefore be used in interactive modelling.
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Figure 3: Running times (ms) of Loop subdivision on an NVIDIA
RTX3060 GPU, for a few different shapes. Our approach requires
35%−45% less time than the state-of-the-art.
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Figure 4: Running times (ms) of parallel Loop subdivision on an
Intel i9-10900k CPU, for the same shapes from Figure 3. Our ap-
proach requires 45% less time than the state-of-the-art.

To further test the robustness of our method, we perform subdi-
vision for a few meshes with different subdivision levels. Table 1
shows that the performance of our method is consistent for a range
of meshes under different scales. Figure 5 reports the running times
of each GPU kernel executed by our method. As can be seen, the 4
stages of our method are well balanced.

Conclusion and limitations. We have presented a parallel im-
plementation of the Loop subdivision scheme based on a simple
mesh data structure. Through extensive experiments, we demon-
strate that our algorithm achieves higher performances than the
state-of-the-art in both running time and memory consumption.
Currently our method is limited to manifold meshes. This is due

Input Mesh BigguyT MonsterfrogT
time (ms) time (ms)

subdivision level ours [VD22] ours [VD22]
2 0.04 0.08 0.04 0.08
3 0.14 0.21 0.11 0.20
4 0.45 0.78 0.39 0.68
5 1.79 3.19 1.49 2.80
6 7.16 12.83 5.97 11.21
7 28.16 52.26 24.15 46.09

Table 1: Loop subdivision time in ms for two meshes with different
levels. Computed on an NVIDIA RTX3060 GPU.
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Figure 5: The running times of each CUDA kernel in our method
for subdivision down to level 6.

to that there exist more than 2 edges connecting the same pair of
vertices, and this is impossible to be encoded by a matrix. One pos-
sible fix for this problem is to split the non-manifold mesh into
several manifold patches.
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