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Abstract
We present a method for transferring the style from a set of images to the texture of a 3D object. The texture of an asset
is optimized with a differentiable renderer and losses using pretrained deep neural networks. More specifically, we utilize
a nearest-neighbor feature matching (NNFM) loss with CLIP-ResNet50 that we extend to support multiple style images. We
improve color accuracy and artistic control with an extra loss on user-provided or automatically extracted color palettes.
Finally, we show that a CLIP-based NNFM loss provides a different appearance over a VGG-based one by focusing more on
textural details over geometric shapes. However, we note that user preference is still subjective.

CCS Concepts
• Computing methodologies → Appearance and texture representations; Rasterization; Supervised learning by regression;

1. Optimization

In this section, we outline the details of our optimization process.
All our results were produced on V100 GPUs where optimizing
a single model on one GPU took three hours while using a node
of eight GPUs brought the time down to 20 minutes per asset. The
code was implemented in PyTorch [PGM∗19] and for differentiable
rendering we used nvdiffrast from Laine et al. [LHK∗20]

We used batch size 8 with learning rate 10−2. Unless otherwise
mentioned, each batch element was randomized with camera dis-
tances based on the model and angles randomized in the sphere
around the model. The power of the point light in the scene was
fixed to 2 and its position randomized in the hemisphere with ra-
diuses in the range of [3,5]. We also used a Phong material model
with roughness set to 2. The render output resolution from the dif-
ferentiable renderer was set to 512×512 and the texture resolution
was set to 1024× 1024 unless mentioned otherwise. We optimize
a separate style texture that is added to the original texture for ren-
dering. Then, the two textures can be controlled and modified inde-
pendently afterwards.

For our main results using CLIP-ResNet50, we use the following
loss weights; λS = 104,λC = 22 and the color loss weight λP in
the beginning of optimization was set to 2000 but then reduced
during the training duration. For other results, we had to tune the
loss balance to adjust for missing losses or varying loss magnitudes.
For VGG NNFM, we used λS = 200,λC = 1.0 and the initial weight
for the color loss was also 2000.

† Work done while both were employed at NVIDIA
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Figure 1: Applying losses directly to the textures are another op-
tion. However, optimizing this way does not reduce discontinuities
in the texture coordinates. Seams in the texture mapping are there-
fore more visible.

2. Additional results

Here, we show additional results that might give more insight into
how different training aspects affect the optimization result.

Direct texture optimization The differentiable renderer allows
backpropagating image-space losses through the renderer to the 2D
texture applied on the mesh. However, image-space losses could
also be directly computed for the texture. In Figure 1, we show
a comparison of the two approaches. Differentiable rendering al-
lows optimizing textures while keeping learned patterns consistent
and scaled similarly across seams. Discontinuities are more visible
when optimizing textures directly (see the front leg of the cow).

Camera distance variation Camera distance plays a significant
role in the size of patterns optimized into the texture. In Figure 2,
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Figure 2: Camera distance plays an important part in the size of
the patterns found on the object. Here we compare different fixed
camera distances r used during optimization while still rotating in
the sphere around the object.
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Figure 3: Results using various texture resolutions.

we show how different camera distances impact the resulting tex-
ture. Intuitively, closer camera distances result in smaller patterns
while increased distance results in larger patterns. Finding the cor-
rect camera distance for a specific style requires some experimen-
tation.

Texture resolution In Figure 3, we show the impact of texture res-
olution on the stylization.

Additionally, we tried optimizing a hierarchy of textures at dif-
ferent resolutions. Optimization would begin at the lowest resolu-
tion and the resolution would be gradually increased. Whenever
the resolution was increased, we upsampled the current lower res-
olution texture to the new resolution and continued optimization.
However, this provided minimal benefit in most cases and finding
adequate hyperparameters became too challenging. But we believe
there might be something interesting to discover if further investi-
gations are made.

CLIP scores The CLIP score is a standard metric for evaluating
how well a generated image aligns with a text prompt. It is com-
puted by taking the cosine similarity between the computed CLIP
embeddings. We evaluate it to determine how well our stylized 3D

assets match the style image. We take the ViT-B/32 predicted im-
age embedding of the style image and compare it to the embed-
ding of the rendered image. We show the results in the table below.
In terms of CLIP score, our method performs well compared to
the others; ranking highest for two and on par for one of the five
style images we tested. The score is computed as an average over a
few different objects for each style image. However, one should be
careful to draw conclusions from these results. In this case, CLIP
scores are slightly flawed as a metric as our pretrained network
CLIP-ResNet50 is trained on the same objective and dataset as the
network used to compute the score. We deliberately select a dif-
ferent CLIP network, CLIP-ViT-B/32, to reduce bias but this can
still lead to a preference for CLIP-based methods over VGG16. We
note that stylization is still a highly subjective area. For example,
certain people might prefer the geometric features of VGG NNFM
over CLIP NNFM or vice versa. However, combining VGG and
CLIP NNFM or using transformer-based CLIP architectures might
lead to improved results.

Models Elephant Picasso River Starry Scream
CLIP NNFM 0.676 0.594 0.536 0.565 0.534
VGG NNFM 0.652 0.534 0.459 0.517 0.461
CLIP Gram 0.678 0.549 0.497 0.554 0.528
VGG Gram 0.655 0.592 0.536 0.580 0.510

Teaser image The teaser image in the main paper, also shown
in Figure 4, was created by stylizing objects individually using
our CLIP-based NNFM method combined with content and color
palette losses. The textures were then saved and added to the correct
objects in Blender 3.0 where we layed out the scene. To account for
our addition of the style texture and the original texture, we built a
shader graph for each object performing this addition and adjusted
some of the texture appearances through some manual tweaking of
the blending. The scene was then rendered using Cycles.

The teaser unfortunately also reveals a challenge with indepen-
dent optimization of objects. Varying object sizes and texture coor-
dinates makes it difficult to get similarly sized patterns appearing
on scene objects. One could instead learn to map position to texture
instead and optimize entire scenes simultaneously.
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Figure 4: Uncropped renders of the teaser figure scene.
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Figure 5: Additional comparisons of different approaches on a Stanford bunny from the Stanford University Computer Graphics Laboratory.
As seen here, the CLIP Gram approach did not work most of the time.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.


