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1. Implementation Details

Our weighting function wp is implemented as a neural network us-
ing a simple multi-layer perceptron (MLP) consisted of 2 hidden
layers of width 1024 and ReL U activations. The output layer size is
set to the amount of user-given control points. A softmax is applied
to the output logits of the network in order to obtain probabilities,
which we interpret as weights. We use the Adam optimizer [KB17]
with learning rate of 3e — 4.

2. Proposition 1

Proposition 1 Let x be a point in space, P a set on control points,
Q be their displacements and w the Euclidean-based weighting
function, i.e. w;(x) = W. Let 7, = MLS(x,P,Q,w) be the
deformation function obtained by plugging x, P, Q and w to
the MLS framework with rigid-deformations constraint, namely,
T(y) = My +r is the optimal rigid solution for some rotation
matrix M and translation vector r. Also, let w be the normalized
5 w( ()) and Ty = MLS(x, P, Q,) be the op-
timal rigid solution of the MLS framework with the normalized
weights. Then Ty(y) = My + & = Tx(y).

weights, i.e., W;(x) =

Proof Our proof follows similar transitions and notations as in
[ZGO7] and [SMWO06], but for completeness we attach the full
proof here.

Let ps« and q« be the weighted centroids of p;’s and q;’s, respec-
tively:

py — Zi wikpi o Liwi(X)di
Yiwi(x) ’ Liwi(x)

Similarly, define p« and §s« as the weighted centroids using the
normalized weights. Then we have:

L Eiwi(x)p; N wi(X)pj

P« =) wi(x)pi = =p

Tt EORE L g P

And similarly, G+ = qx.
By plugging Tx(y) = Tx(y) = My + into equation 1 (main text) we
get a quadratic dependency in F. Since the minimizer is where the
derivatives with respect to each of the free variables in T} are zero,

we can solve directly for & in the terms of the matrix M. Taking
the partial derivative w.r.t. the free variables in ¥ produces a linear
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system of equations. Solving for F yields that
= (’i* *ﬁ*M: qx *p*M

This leaves only M to be determined. Note:

o =wi(X)2, Pi=pPi—Px, & =qi—Qqsx,
P=(oupr---owpn), O=(ctidy---ONGN)

Similarly, we note for the normalized weights:

Then

A A A 2 A A A A A A
1MP —Q||p=tr((MP - Q) (MP — Q) =
tr(P'B) +1r(0' 0) — 2tr(Q' MP)

where ||-||r is the Frobenius norm. Since P and Q are con-
stant, minimizing E corresponds to maximizing y = tr(Q'MP) =
tr(MPO).
Now, observe that the following holds:

PQ' = Zoczoclpl Q) Zocloczpl @)’

= L )pi(@) =
Wi ~ o~ 1 =~ o~ N\
Z(): v pi(@)) = Tom ;Wipi(Qi) =
Fwy L O0Bi@) = fo= o) = e Yawaihi(@)' = cpe

Therefore, the singular value decomposition of PO’ = UAV" satis-
fies U = U,V =V and A = cA, where UAV" is the singular value
decomposition of PQ". Thus

v =tr(McPQ") = tr(McUAV") = tr(U'M'VcA)

Write N = U'M'V, then N is orthogonal since U, M and V are
orthogonal. It follows that |N; ;|< 1, and

ZN,,LK < Zc?»

Hence,  is maximized when N = <= M = VU' = M and there-
fore f =q«—p«sM=r. [

y=1r(NcA) =
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3. Additional Experiments and Results
3.1. Experimental Setup

Data. We demonstrate our performance abilities on data from
different categories. In order to compare to KeypointDe-
former [JTM*20] we trained their method on the relevant
ShapeNet [CFG*15] category, as it can not be applied on a single
input and requires pre-training.

Control points annotation. All methods we compare to, ex-
cept KeypointDeformer [JTM*20], require and allow control points
that are manually annotated by the user. In the evaluations against
KeypointDeformer, we use the control points given by their key-
point predictor, as KeypointDeformer can not be conditioned on
arbitrarily positioned control points. Yet, the displacement of each
control-point is still annotated by the user. Also, in the case of
ARAP [SA07], a mesh vertex must be chosen as a control point.
Therefore, we simply use the nearest vertex to each of the user an-
notated control points, when comparing to ARAP.

3.2. Approximation vs. Interpolation

As we use a softmax normalization layer in our construction of the
weighting function, we can add a temperature scaling parameter to
the network’s output, i.e.

wi(x)
e T
wp(X)i = —& M

i€’

where w;(x) are the network’s outputs.

The temperature enables the user to control the degree of approx-
imation versus interpolation. As setting 7 — O result in a sharper
weight distribution i.e. making the weight of the most dominant
control point approach 1 and the other weights approach 0.

We showcase our technique’s ability to enable users to con-
trol the degree of approximation v.s. interpolation, using a single
temperature parameter. A low temperature value results in sharper
weight assignments, mainly considering the closest control point,
similar to nearest neighbour interpolation of the input displace-
ments. On the other hand, a high temperature value results in a
smoother combination of the control point specified displacements,
i.e. approximation, as the resulting displacement at each control
point does not necessarily equal the specified user input exactly.
Changing the temperature value does not require additional train-
ing, as it only amounts to scaling the trained network outputs. Fig-
ure 1 presents deformation results under different temperatures.
The control points and their displacements are displayed to facil-
itate the visualization of the approximation quality.

3.3. MLS Ablation

MLS hyper-parameters. MLS [ZG07] allows the user a "fall-out"
hyperparameter, i.e., o, to control the typical affecting distance of
each control point. Figure 2 shows that even though o has a smooth-
ing effect on the deformation, the results still suffers from signif-
icant artifacts. This is evident in the collateral damage caused by
high influence of irrelevant control points, seen on the legs of the
bottom row left most chair, and on the back rest of the top row chair.

This phenomenon can also be foreseen mathematically from Equa-
tion 2 (main text), as changing the o parameter does not resolve the
large weights and gradient norms near control points.

Another approach for trying to achieve a better weighting func-
tions based on an Euclidean distance, is to add a small value €, to
the denominator of the weighting function, i.e., w;(x) = W'
Figure 3 reveals that adding € does not sufficiently resolve local ar-
tifacts and undesirable deformation properties, such as the bending
of the legs in the top row chair.

3.4. Additional Results

Qualitative Results. Further comparisons to other methods can be
seen in Figure 4 that also demonstrate the limitations of previous
approaches. For the armadillo shape (bottom row), KPD [JTM*20]
result can not be obtained, as the armadillo shape does not fall
into any of the categories KPD was trained on. Also, note that
ARAP [SAQO7] results for the top 3 rows are meaningless as
ShapeNet [CFG*15] meshes are often a mesh soup and therefore
are not a manifold.

Additional comparison to plain MLS can be seen in Figure 5,
where it shows that MLS suffers from local artifacts. We claim that
the artifacts in Figure 5 are due to the very high weights, experi-
enced by surface points that are close to the input control points, as
further analysis shows in Section 3.5 in the supplementary.

Quantitative Results. We measured the distortion in discretized
Laplacian magnitude and mean curvature of the deformed shapes.
We used the difference in the Laplacian magnitude rather than the
actual Laplacian as we want to be invariant to rotations, that are a
desirable property of the deformation, and only want to penalize
loss of details that is expressed through the Laplacian magnitude.
The full qualitative results discussed in the paper are attached in
Table 1 and Figure 6.

Table 1: Quantitative evaluation of our method in comparison to
other approaches, using the average mean curvature difference be-
tween the source shape and the deformed shape. ARAP results for
the top 3 shapes are omitted as they are meaningless due to the de-

formations failing, as can be seen in Figure 4.

Average Mean Curvature ({.)
Shape Ours | MLS | KPD | ARAP

Chair 16 19 42 -

Airplane 1764 | 1880 | 2142 -

Car 52 8.9 17.8 -
Armadillo || 0.412 | 0.578 - 0.574

3.5. Piecewise Smooth Deformation

Figure 6 (main text) shows the MLS and NeuralMLS weights and
resulting deformation functions, and demonstrate the difficulty of
MLS to produce piecewise solutions. It can be seen that Euclidean-
based weighting function starts off at a very high value, close to the
control points (bottom-left), which causes the local artifacts that
are observed across the MLS results. The weighting function then
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Figure 1: The temperature hyper-parameter effect demonstrated on various chairs. The temperature value gives the user control over the
approximation level of the deformation, as a trade off between approximation and interpolation of the input control point guidance.

decrease rapidly as we move further away from the control point
until reaching a non-zero plateau. This result in deformation func-
tion (top-left) that is both less smooth (sharp gradient near the con-
trol points) and less piecewise (the deformation interpolation be-
tween two points is not linear). Our method, on the other hand, pro-
duces weights that are much smaller near control points (bottom-
right) ,i.e. achieving an approximation instead of interpolation, then
slowly and smoothly decrease until reaching a negligible value at
some point, creating a more piecewise solution (top-right).

4. Geometry Awareness Weighting Function

We attach an additional example for the geometry awareness nature
of our method. Figure 8 shows a 2D example of this property.

5. User Study

The user study was done over three different categories (Car, Chair,
Airplane), each category contained three different shape, and three
different deformation were applied on each shape (a total of 27 dif-
ferent deformations). We asked users to choose the most realistic-
looking deformation, among the different deformation methods ap-
plied on each set of shape and control point configuration. 23 differ-
ent users, composed mostly of computer vision/computer graphics
students and researchers, replied to our study and the results are
displayed in Table 2.

We attach the full user study questions for the chair shapes in
Figure 9, for the airplane shapes in Figure 10 and for the car shapes
in Figure 11. Shapes label with 1 are produced by MLS[ZGO07],
shapes label with 2 are produced by NeuralMLS and shapes label
with 3 are produced by KPD[JTM*20].
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The full user study answers are attaches in Figures 12, 13 and 14.
MLS[ZGO07] answers are colored with blue, NeuralMLS with green
and KPD[JTM*20] with yellow.

Table 2: User study results. Users were asked to choose the de-
formation that looks the most realistic, across results produce by
NeuralMLS, MLS and KPD. The numbers in the table represent the
% of users that chose the result corresponding to each method. The
study concludes that our method is more likely to produce realistic
looking results, compared to MLS and KPD, as indicated by more
users choosing NeuralMLS for every category in the study.

% of users ()

Category || Ours | MLS | KPD
Chair || 77% | 14% | 9%

Airplane || 56% | 12% | 32%
Car 71% 16% 13%
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Figure 2: The o hyper-parameter effect in the plain MLS method. This parameter provides the user control over the region of influence of
each control point. Observe how altering this parameter, even though mitigating certain artifacts, such as sharp edges, causing new ones,
e.g. bending rigid legs in the top chair or incompatible control point influence, manifested in the legs of the bottom leftmost chair.
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Figure 3: Demonstrating the effect of adding an € parameter to the denominator of the weighting function of plain MLS on the chair shape.
This value is used for numerical stability but can also, as a by-product, enable the user to smooth out the deformation of the shape close

to control points. Observe that although indeed mitigating the sharp artifacts the deformation still suffers from them, as well as from other
problems, such as bending of rigid parts (top chair legs).
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Source Ours MLS[ZG07] ARAP[SA07] KPD[JTM*20]
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Figure 4: Comparison of our method to other control point based deformation methods. Our method achieves desirable results compared
to traditional and learning-based deformation techniques. Note that the first three rows are non-manifold meshes, which ARAP does not
support. Since KPD requires a dataset to be trained on, results for the "armadillo” shape (bottom row) cannot be obtained.
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Figure 5: Deforming source shapes from the left column with user

T
K
m
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annotated control points, visualized by the blue arrows. Observe B '
how MLS suffers from local artifact near the input control points,
while our method is able to avoid these issues. _
Min Mlax
+  airplane . Figure 7: In this Figure, the weight function and its gradient norms
: 2:;" : are visualized as heat maps for the control points circled in blue at
8™ . amadilo . the leftmost column, with the MLS weights and gradient norms be-
g ing in log-scale. This illustrates our method’s ability to produce
Bewl v more piecewise smooth deformations compared to plain MLS, as
Nl . ‘ our weight function is more evenly distributed over each control
§ point adjacent region, where adjacent is with respect to the entire
= control point configuration, compared to the sharp peaks produced

by plain MLS. This Figure also emphasises NeuralMLS’s approx-
o — imation characteristics compared to MLS that is an interpolation

Mean ALaplacianMagnitude technique, as weights near control points are not very steep com-
pared to their surroundings.

[@ous ®Ms @ARAP @KPD |

Figure 6: Quantitative comparison of our method against other ap-
proaches from Figure 4. Each point is embedded according to its
distortion (mean ALaplacianMagnitude) and approximation degree
of the control points (Mean L2 Distance). Point near the bottom left
corner are considered as "better". ARAP results are omitted for the
Chair, Airplane and Car shapes as the deformations failed.
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Figure 8: NeuralMLS learns a geometry-aware weighting function.
We show two different control point configurations in the left (blue)
and right (green) columns. We visualize the learned weighting func-
tion for the highlighted control point (circled in black). Note the
difference between the weight of the top left control point in the top
row.
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Figure 9: User study chair questions.
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Figure 10: User study airplane questions.
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Figure 11: User study car questions.
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Figure 12: User study answers for questions 1-10.
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Figure 14: User study answers for questions 22-27.
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