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Abstract
We introduce NeuralMLS, a space-based deformation technique, guided by a set of displaced control points. We leverage the
power of neural networks to inject the underlying shape geometry into the deformation parameters. The goal of our technique is
to enable a realistic and intuitive shape deformation. Our method is built upon moving least-squares (MLS), since it minimizes
a weighted sum of the given control point displacements. Traditionally, the influence of each control point on every point in
space (i.e., the weighting function) is defined using inverse distance heuristics. In this work, we opt to learn the weighting
function, by training a neural network on the control points from a single input shape, and exploit the innate smoothness of
neural networks. Our geometry-aware control point deformation is agnostic to the surface representation and quality; it can
be applied to point clouds or meshes, including non-manifold and disconnected surface soups. We show that our technique
facilitates intuitive piecewise smooth deformations, which are well suited for manufactured objects. We show the advantages of
our approach compared to existing surface and space-based deformation techniques, both quantitatively and qualitatively.

CCS Concepts
• Computing methodologies → Computer graphics; Machine learning;

Figure 1: Interactive shape deformation using NeuralMLS. We
train a neural network on a given set of control points (yellow),
in a displacement-agnostic manner. Then, the user applies various
displacements and receives different deformations.

1. Introduction

Interactive deformation of 3D shapes is a long-standing problem
in computer graphics [YLW*21]. The goal is to provide the user a
simple and intuitive interface for shape manipulation.

We present a space-deformation technique, where the user ma-
nipulates a set of control points (CP) which are interactively dis-
placed to define the deformation. The technique is built upon mov-
ing least-squares (MLS), as it minimizes a weighted sum of the
given CP displacements. However, in traditional MLS the weight-
ing function is crafted based on pre-defined heuristics, which are
agnostic to the given input shape. Instead, we opt to learn a weight-
ing function, which is tailored to the given input shape using a neu-
ral network, as illustrated in Figure 2, leading to a NeuralMLS.

Our technique benefits from the innate inductive biases of neu-
ral networks (e.g., intrinsically favor smooth and desirable solu-
tions [BGG*20] and a tendency to converge to a piecewise smooth
solution [OWSS20]). Those biases enable us to train the network to
learn a smooth piecewise weighting function from only the given
CP, and avoids having to train on a large dataset. Piecewise smooth
deformations are desirable when editing manufactured objects. It
is particularly useful for keypoint-based deformations, since we
want to deform or displace each part separately while smoothly
interpolating within each part independently. Our interface and a
set of shape manipulations are shown in Figure 3. Our method:
(i) provides an intuitive and simple framework for shape manip-
ulation; (ii) requires no training dataset; (iii) produces piecewise
smooth deformations; and (iv) provides control over the relaxation
degree of the interpolation property. We demonstrate quantitative
and qualitative advantages of our approach compared to existing
surface and space-based deformations. Our code is available at
https://github.com/MeitarShechter/NeuralMLS.

2. Related Work

Our paper focuses on shape deformation which has been stud-
ied extensively in the literature for the past several decades
[YLW*21]. One of the common schemes are referred to as space-
based deformation, where the deformation is applied over the
entire ambient space containing the shape. Among space-based
methods are free-form deformation (FFD) [SP86]), cage-based
deformation (CBD) [JSW05; LLC08] and moving least squares
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Figure 2: NeuralMLS learns a geometry-aware weighting function.
We show two different (1D) control point configurations (denote by
the star locations). We visualize the learned/calculated weighting
function of each control point for both NeuralMLS (left) and MLS
(right) by color coding. Note the difference in the weight distribu-
tion of the points which are adjacent to the moved point in Neu-
ralMLS, compared to the lack of change in MLS.

(MLS) [ZG07].As space-based deformations seek to interpolate a
given set of point displacements over the entire space, the main
challenge that arises is: how to define an interpolation that fol-
lows desired deformation properties, such as piecewise smoothness
which facilitate detail preservation of the input shape.

Recently, there has been a rising interest in using deep learning
to edit shapes through deformations. In ALIGNet [HFW*18], the
authors learn a FFD grid which can warp source shapes to incom-
plete target shapes. Neural cages [YAK*20] uses a neural network
to learn a CBD. Other works harness neural networks to learn a
per-point displacement [WCMN19]. A limitation with the above
methods is their inability to provide a simple and intuitive interface
for shape manipulation. Constructing a cage is a rather complex
task, where as annotating a few control points is straight-forward.

Shape deformation based on a sparse set of control points (CP)
provides an intuitive interface for shape manipulation. CP based
methods enable the user to guide the deformation using various
constraints. In As-Rigid-As-Possible (ARAP) [SA07], the CP im-
pose hard constraints on a distortion minimization objective. In
KeypointDeformer (KPD) [JTM*20], the CP are used to influence
a cage enclosing the shape. MLS [ZG07] uses the CP to construct
a least squares minimization problem. Although CP based methods
often yield desirable results, they still suffer from various draw-
backs. ARAP is impractical for large meshes and requires high
quality, manifold, single-connected component mesh, which is a
considerable demand especially for scanned objects. KPD is re-
quired to be trained on the same class used at inference time, and
only provides a fixed amount and initial placement of CP for the
user. MLS might suffer from local artifacts around the CP and over
smoothing of rigid parts, as seen in Figures 4, 5 and 6.

The spectral bias and smoothness properties of neural networks
suggest that they learn low frequencies first and provide a type of
smooth interpolation of the training data [BGG*20]. Furthermore,
[OWSS20] showed that the types of functions learned by neural
networks tend to be piecewise smooth, which is particularly inter-
esting for shape manipulation.

3. Method

NeuralMLS learns a weighting function, which is then used within
the MLS framework. To learn such function, we soft-divide the

Figure 3: Method overview. Training (top): given a shape x and
control points p, we train a weighting function network wp to learn
to map each control point position to an assigned 1-hot encod-
ing. Inference (bottom): during inference, we freeze the network
weights and each point in the shape x passes through wp to gener-
ates the per-point weights W. The user can then interactively dis-
place the control points to new locations q, which will generates a
new shape x∗ using MLS.

space into regions of control point (CP) influence by treating each
CP as a class, and train a network to output the corresponding class,
based on the control point’s xyz position in space. In the following,
we elaborate more on the technique. We first give a brief overview
on plain MLS, and then explain how we train and use the network.

3.1. Moving Least Squares (MLS)

MLS is a space-deformation technique, where the set of the given
CP and their displacements, denoted by P and Q, are projected into
the entire space. Specifically, it finds for any given point in space
x ∈ R3, the deformation Tx(·) that minimizes the following:

∑
i

wi(x)|Tx(pi)−qi|2, (1)

where pi and qi are the CP and their displacements, respectively,
and wi are the weighting schemes of each CP. Euclidean-based
weighting function is typically being used:

wi(x) =
1

d(pi,x)2α
, (2)

where d is the distance metric (Euclidean in MLS) and α is a fall-
off parameter that weigh the distance function. A closed-form so-
lution for Tx can be obtained when the deformation is constrained
to be an affine, similarity, or rigid transformation [ZG07].

3.2. Learning a Geometry Aware Weighting Function

The MLS framework can be seen as a deformation function f :
R3×RPx3×RPx3×wp →R3, where the inputs are a point in space
x, the CP P , the CP after displacement Q and a weighing function
wp : R3 → RP

≥0, and the output is the deformed point location.
For performing the deformation, we apply f on all the points of
the given shape. Our work focuses on learning a new weighting

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

66



M. Shechter, R. Hanocka, G. Metzer, R. Giryes, D. Cohen-Or / NeuralMLS: Geometry-Aware Control Point Deformation

function, which we plug into the MLS framework and gain the fol-
lowing desired deformation properties, for the deformation func-
tion f : 1) Approximation: the control points P should map approx-
imately to their displaced locations Q, i.e., f (pi)≈ qi; 2) piecewise
Smoothness: f should produce piecewise smooth deformations; and
3) Identity: If ∀i : pi = qi then Tx should be the identity function,
i.e., f (x) = x. As the third property is guaranteed by the principles
of MLS, our effort concentrate on the first two.

Our weighting function wp : R3 → RP
≥0 is computed using a

multi-layer perceptron (see supplementary for implementation de-
tails) and we use a proxy classification task, where each given con-
trol point pi ∈ P is considered as a class, to train the network. The
training is done by minimizing a categorical cross-entropy classi-
fication loss such that the input is the CP location and its label is
its corresponding class. As a result, given a point in space, the net-
work provides us with a probability for each class, that we interpret
as a weight assignment for the corresponding CP, where the weight
function has a piecewise smooth structure due to the network in-
herent bias. In order to initialize the training we first construct the
network to contain an output size defined by the number of CP. We
then train our network on the given set of CP (note the training is
agnostic to the CP displacements), which takes only a few seconds.
Given the trained weighting function, the user can displace the CP
to interactively deform the shape.

By casting the problem as a classification task, we implicitly in-
ject awareness to the underlying CP geometric configuration, as
each CP also acts as a negative classification example for all the
others. This makes the learned weight function depend on an entire
CP configuration, rather than being affected by each CP indepen-
dently, as illustrated in Figure 2. This property, for rigid deforma-
tions, is not manifested in the Euclidean-based weighting function
(or any hand-crafted weighting scheme that is independent of the
rest of the CP), as can be concluded from the following proposition:

Proposition 1 (Informal) The optimal rigid transformation ob-
tained by the MLS framework is the same whether the weighting
functions are normalized or not.

For formal wording and proof, see the supplementary material.
From Proposition 1, we conclude that for rigid solutions, observing
the weights wi with no normalization is enough as the solutions are
the same, and therefore adding a new CP or manipulating others has
so effect on the weight of a certain CP. Thus, the weight of each CP
is not adaptive to the specific CP configuration.

3.3. Approximating vs. Interpolating

We apply a softmax to the weighting function, which enables con-
trolling the temperature through a scaling parameter. This enables
the user to control the degree of approximation versus interpola-
tion. See supplementary material for further details.

4. Experiments

In this section we demonstrate the key benefits of our method, com-
pared to plain MLS and other techniques. In our experiments, we
show that our method is able to achieve more intuitive and realis-
tic shape deformations both qualitatively and quantitatively (Sec-

tion 4.2) and explore our more piece-wise smooth weighting func-
tion (Section 4.3). Additional experiments that demonstrate the
control over the approximation degree and the limitations of the
Euclidean-based weighting function are in the supplementary.

4.1. Experimental Setup

We evaluate our technique on data from different categories. Our
method requires no training data besides the user specified control
points (CP) and input shape to deform. All results are obtained us-
ing a softmax temperature of 1 and constraining the MLS solution
to rigid deformations. See supplementary for more details.

4.2. Shape Deformation

We demonstrate the advantages of our method compared to both
classic and learning-based methods.

Qualitative Evaluation. Figure 4 contains visual comparisons
to MLS [ZG07], ARAP [SA07] and KPD [JTM*20]. Our method
is able to better preserve local features of the source shape, while
still adhering the CP guidance. The CP displacements are manu-
ally selected to reflect reasonable shape deformations. Additional
results and comparison to MLS can be seen in Figure 5, where it
shows that MLS suffers from local artifacts. More results and fur-
ther discussion can be found in the supplementary.

Quantitative Evaluation. We measured the distortion in dis-
cretized Laplacian magnitude and mean curvature of the deformed
shapes, compared with the source shapes appear in Figure 4 and in
the supplementary. These measures infer the amount of details pre-
served which indicates a desirable deformation. As one trivial way
to achieve zero distortion in the above measures, is to not deform
the shape at all, we also compare the approximation level of the
deformed CP to their given displacements. Our approach is able to
achieve the lowest distortion across all categories by a large mar-
gin, while still adhering the CP guidance. The full results can be
found in the supplementary.

User Study. We conducted a user study in order to evaluate how
realistic our deformations look compared to MLS and KPD, ARAP
was excluded from the study, as the deformations failed due to bad
input mesh. The study concludes that our method is more likely
to produce realistic looking results, compared to MLS and KPD.
Complete details and results are in the supplementary.

4.3. Piecewise Smooth Deformation

Piecewise smoothness is a desired property for shape deformations.
It enables applying different deformations to different parts of the
shape, while preserving a natural and smooth interpolation within
and between parts. The visualizations depicted in Figure 6, show
the MLS and NeuralMLS weights and resulting deformation func-
tions, and demonstrate the difficulty of MLS to produce piecewise
solutions (see supplementary for further analysis).

5. Conclusions

We presented a geometry-aware space-deformation technique
based on the MLS framework. Our key idea is to leverage the power
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Source Ours MLS[ZG07] ARAP[SA07] KPD[JTM*20]
Figure 4: Comparison to existing control point based deformation methods. Our method achieves desirable results compared to traditional
and learning-based deformation techniques. Note that the chair is a non-manifold, which is not supported by ARAP.

Source Ours MLS[ZG07]
Figure 5: Deforming source shapes (left) with user annotated con-
trol points (blue arrows). Observe how MLS suffers from local arti-
fact near the control points, while our method avoids these issues.

MLS[ZG07] Ours
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Figure 6: The resulting deformations (top) and weights (bottom)
of our method (right) and MLS (left). This illustrates our method’s
ability to produce more piecewise smooth deformations compared
to MLS, as our weights are more evenly spread over each control
point adjacent region, compared to the sharp peaks of MLS.

of neural networks to learn a weighting function associated with
the given control points (CP). The learned weights adhere to the
geometric configuration of the CP which implicitly respects the
underlying shape geometry and results in piecewise smoothness.
Traditional MLS treats the CP displacements as hard-constraints.
On the other hand, our NeuralMLS treats the displacements as soft-
constraints in order to obtain piecewise-smooth deformations. In-
deed, there is an inherent trade-off between adherence to the con-
straints and a piecewise-smooth weighting function. Our frame-
work provides a relaxation parameter which can trade-off smooth-

ness for constraint-adherence, which enables intuitive and interac-
tive manipulation of the shape.

Our framework is built for an interactive scenario with user-
specified CP and constraints. In the future, we would like to train
a network to learn the location and number of the CP based on an-
alyzing the input shape. We would like also to consider grouping
and structuring the CP to reflect the symmetries and relationships
of the input shape, such that the editing will be faithful to the input
shape semantics.
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