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Abstract
We propose a novel encoder/decoder-based neural network architecture that learns view-dependent shape and appearance
of geometry represented by voxel representations. Since the network is trained on local geometry patches, it generalizes to
arbitrary models. A geometry model is first encoded into a sparse voxel octree of features learned by a network, and this model
representation can then be decoded by another network in-turn for the intended task. We utilize the network for adaptive super-
sampling in ray-tracing, to predict super-sampling patterns when seeing coarse-scale geometry. We discuss and evaluate the
proposed network design, and demonstrate that the decoder network is compact and can be integrated seamlessly into on-chip
ray-tracing kernels. We compare the results to previous screen-space super-sampling strategies as well as non-network-based
world-space approaches.

1. Introduction

Scene representation networks (SRNs) have gained popularity for
single-and multi-view object reconstruction [LGZL∗20, MST∗20,
NMOG20, PFS∗19, SZW19, YKM∗20] and realtime rendering
[GKJ∗21, TLY∗21]. SRNs represent models by features that are
learnt by a network, so called latent codes. They can be accessed
at arbitrary positions to obtain model-specific information such as
shortest distance to the model or color. The networks overfit to the
model they are trained for and do not generalize to other models.
For shape reconstruction from 3D point clouds, Jiang et al. address
this limitation by encoding implicit functions of local geometry
patches in low dimensional latent codes, and optimizing for those
during reconstruction [JSM∗20]. Similarly, local geometric detail
can be encoded in 3D style codes and transferred to coarse geo-
metric representations for geometry upscaling [CKF∗21], and to
implement data-driven mesh subdivision [LKC∗20].

We extend on current SRNs as follows: We present a novel en-
coder/decoder-based network architecture, called PatchNet, which
learns generic local properties of geometric shapes on different lev-
els of details (LoDs). The architecture generalizes to new models
by learning a view-dependent encoding of local geometry patches,
so that at a coarse scale the network can predict the appearance
of geometric details. The learned feature representations are orga-
nized in a hierarchical LoD data structure to support coarse to fine
look-ahead at various scales.

We utilize the aforementioned capabilities in ray-tracing, to
predict super-sampling patterns when seeing coarse-scale geome-
try. Therefore, we ray-trace against a Sparse Voxel Octree (SVO)
[LK11], where each node represents a voxel that intersects the ge-

ometry and stores averaged luminance LV and normal NV over the
intersected surface. For each pixel, a ray is intersected with the
SVO by traversing it in top-down manner until the projected voxel
size is approximately equal to the pixel size. Then, the pixel appear-
ance can be estimated by LV at the intersected voxel. If the local
geometry shows self-occlusions for the current view, or projects
only to a sub-pixel area, LV is likely to be a bad approximation.
Super-sampling patterns attempt to identify this case and compute
improved estimates by tracing several rays for each critical pixel.

We compare our approach to a non-network-based world-space
approach as well as classical [LRU85, Mit87, RFS03a, RFS03b,
XSXZ07] and network-based [KKR18, WITW20] screen-space
super-sampling strategies. Conceptually, screen-space approaches
refine a pixel whenever its neighboring pixels show significant vari-
ation in appearance. They fail if neighboring pixels show similar,
yet consistently wrong appearances. For instance, this effect occurs
at fence-like structures where the gaps between laths are not pre-
served at coarser scales.

2. Method

We propose a world-space approach that uses a view-dependent
per-ray oracle function f : (P,θ) 7→ (σgt,Lgt) to detect pixels that
need refinement. Its input is a local geometry patch P(M, p) of
M close to the intersection point p between the ray and the SVO,
as well as additional rendering parameters θ. P is projected into
the current pixel according to θ, and the oracle returns the fraction
σgt ∈ [0,1] of the pixel covered by the projection of P as well as the
average seen luminance Lgt ∈ [0,1]. If σgt ≪ 1 or |Lgt −LV | ≫ 0,
the current pixel has to be refined to obtain an accurate pixel ap-
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Figure 1: 2D Example showing patches for all corners of a voxel
V with ∆ℓ= 2, r = 8. They are obtained by sampling blocks of fine
voxels with side length r after descending ∆ℓ levels of detail.

pearance. We suggest to realize f by an encoder/decoder network
PatchNet, which can be evaluated efficiently on a per-pixel basis.
The encoder E : (M, p) 7→ Penc(M, p) extracts the local geometry
patch P and transforms it to a low dimensional feature code Penc.
The decoder D : (Penc,θ) 7→ (σN,LN) acts as a lightweight neural
renderer to compute approximate values (σN,LN) for (σgt,Lgt).

2.1. Encoder

The encoder design is inspired by the work of Takikawa et al.
[TLY∗21], in which a collection Z of trainable feature codes is
structured in a SVO that corresponds to the geometric model. Each
allocated voxel stores a d-dimensional feature code at each of its
corners, with the features being shared at common corners of ad-
jacent voxels. When SVO traversal stops by intersecting a voxel
of LoD ℓ ∈ N at p ∈ R3, the eight feature codes of the intersected
voxel are trilinearly interpolated according to the relative position
of p in the voxel. The interpolated d-dimensional vector forms the
output Penc of the encoder. In a number of experiments we have
found that d = 10 is sufficient to learn model independent features.

Patch Codes

In current scene representation networks, the feature codes in Z
are learned on a per model basis, i. e. a training process is re-
quired once per model. Instead of optimizing for the feature codes
directly, we propose to train a Patch Encoder network Epatch that
maps small patches of local geometry data to patch dependent fea-
ture codes, which we call patch codes. Given a corner C ∈ R3 of
a voxel V at LoD ℓ in the SVO, its corresponding patch holds ge-
ometry data over a block of r3 "fine" voxels at LoD ℓ+∆ℓ that is
centered at C (see Fig. 1 for a 2D example). Geometry information
of each fine voxel is represented by a 5D vector with the first com-
ponent encoding shape by setting it to 1 if the fine voxel is existing,
and the remaining components containing LV , NV as stored in the
fine voxel. The resulting 4D tensor of shape (r,r,r,5) is passed to
Epatch : Rr×r×r×5 → Rd to compute the patch code for C.

We found that Epatch can be efficiently realized by flattening the
input to a 5r3-dimensional vector and processing it in a multilayer
network with three hidden layers of 256 channels each. Each layer
is realized by taking the input vector x (or output of the previous
layer) and transforming it to the output y = max(Mx+b, 0)∈R256

with an appropriately sized matrix M and bias vector b containing
learnable network weights. Experiments with 3D convolutions and

Voxception blocks [BLRW16] increased computation costs signif-
icantly with no significant effect on predictive power. We attribute
this to the oracle function f lacking translation invariance.

We set ∆ℓ= 2, so that PatchNet is able to "look ahead" two addi-
tional levels of detail when deciding if refined sampling is required.
The block resolution is set to r = 2 · 2∆ℓ, yielding a block of twice
the side length than that of V . Thus, the network is able to perceive
all geometry that can influence the current pixel, even if the pixel’s
center ray just barely scratches V .

2.2. Decoder

The decoder D is realized by a small multilayer network that com-
bines the feature code of the encoder and additional rendering pa-
rameters to form the output (σN,LN). The following input is pro-
vided to the decoder: a) The d-dimensional encoder output Penc. b)
The 6D ray frame for the current pixel, i.e., the ray direction and its
up vector (the projection of the camera’s up vector to the orthogo-
nal complement plane of the ray). c) The 1D pixel-voxel-ratio en-
coding the relative size of the projected voxel to the current pixel.
It is obtained by dividing the side length of the pixel by the side
length of the voxel projected onto the screen. d) All evaluations of
the 25D spherical harmonics up to degree 4 at the ray direction, to
facilitate learning view-dependent features. 9 out of 10 dimensions
of the patch code Penc are interpreted as spherical harmonic coef-
ficients by multiplying them with the nine spherical harmonic base
functions up to degree 2 evaluated at the ray direction.

The decoder consists of three layers with 48 channels each. Ran-
dom dropout of network units to prevent overfitting was not per-
formed, and normalization of activation values to the same scale
didn’t show any improvement. The output layer is followed by
a shifted and rescaled non-linear sigmoid activation function to
limit the network outputs to the interval [−1,2]. Outputs are fur-
ther clamped to [0,1] during inference, yet no additional clamping
is performed during training to avoid vanishing gradients.

2.3. Training

Epatch and the decoder once are trained on randomly sampled ge-
ometry patches of a complex geometry model. A training sample
is generated by first sampling a voxel V of the model’s SVO, ex-
tracting a patch at LoD ℓ+∆ℓ with resolution (3 · 2∆ℓ)3 centered
at V , and rendering it into an orthographic 64×64 viewport repre-
senting a single pixel. The pixel-voxel-ratio is uniformly sampled
from [ 1

2 ,1] and determines the size of the viewport in world space.
Camera parameters are obtained via rejection sampling such that
the viewport’s center ray intersects V . By choosing a patch reso-
lution as stated above, it is ensured that the patch can fill out the
whole viewport independently of where the center ray intersects V .

Each training sample is processed by invoking Epatch at each cor-
ner of V and retrieving Penc at the intersection point as described in
Sec. 2.1. Next, the rendering parameters are derived from the train-
ing sample and the decoder is invoked to compute (σN,LN). To
train the network, its weights are repeatedly updated through a gra-
dient descent optimizer that minimizes |σN−σgt|+ |LN−Lgt|. The
gradients are computed by back-propagating them via the chain
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Figure 2: (a-d) Sample rendering splits (top left = 12-spp, bottom right = 322-spp) of all datasets used during training and evaluation. (a)
Underbelly interior of Airplane, (b) Power Plant, (c) San Miguel, (d) Sponza. (e) 12- and (f) 322-spp renderings of the airplane’s tail fin and
refinement pattern as returned by (g) PN-Airplane and (h) SS-Variance.

rule through the network. The network is trained for 8 epochs on a
dataset of 16 million samples, starting with a learning rate of 0.001
that is reduced by a factor of 0.1 after 4 and 7 epochs respectively.

2.4. Preprocessing & Rendering

In order to support realtime-performance during rendering, the per-
voxel corner patch codes are precomputed and stored for all SVOs
that are about to be rendered. This is performed by traversing each
SVO and applying Epatch to the patches of all allocated voxel cor-
ners. Note that since Epatch only processes small patches of geom-
etry, it can be readily applied to new models without costly retrain-
ing. The patch codes Z are baked into the SVO, and at each inter-
section the codes at the corners of the intersected voxels are read.

3. Results

We evaluate PatchNet on four scenes (see Fig. 2a-d): the San
Miguel scene, a bisected Sponza scene, and detailed CAD mod-
els of an airplane and power plant. Except for San Miguel, di-
rect, diffuse lighting from two antipodal directional light sources
is baked into voxel luminance. For San Miguel, we remove most
plants and bake global illumination effects with the Cycles ren-
derer of Blender. Additionally, camera tracks of 2000 frames per
scene are rendered in a resolution of 1302 pixels. All tracks start
far away from geometry, close in over 1000 frames and then ex-
plore the scene’s detailed geometry for another 1000 frames.

Different refinement strategies are compared by fixing a per
frame budget of X% of active pixels—i. e. pixels that intersect
geometry or have intersecting neighbors—that may be refined at
least once. Refinement quality is measured by computing the MSE
over all active pixels in any frame, with refined pixel errors being
zero and unrefined pixel errors being the difference between render-
ing with 12-spp and 322-spp. Evaluations with other image metrics
such as PSNR, SSIM and LPIPS yield similar results.

Fig. 3 shows the MSE values for each camera track when vary-
ing the per frame budget between 0% and 100%. Our PN-[Model]
strategies are implemented by evaluating PatchNet, trained on
patches of [Model], for each pixel intersecting the SVO. Pixels with
high values of |1−σN|+λ · |LV −LN|, where λ= 5, are refined first.
We compare against the—according to our findings—best perform-
ing classical screen-space based strategy SS-Variance [LRU85] that
refines pixels showing a high variation of luminance in their sur-
rounding 3x3 kernels first, as well as a world-space based strategy

WS-LUT that—for each pixel—looks up an error estimate based on
the child mask of the intersected voxel. View-dependent error es-
timates are precomputed by rendering allocated child voxels from
many views, and then stored as nine spherical harmonics coeffi-
cients for each of the 28 possible child configurations. We consider
WS-LUT as a classical analog of our approach in which PatchNet
is exchanged by a look up table. Both, SS-Variance and WS-LUT
are implemented by us. Further, we evaluate against pretrained
screen-space networks of Weiss et al. [WITW20] and Kuznetsov
et al. [KKR18]. Both networks learn an intermediate sampling map
from a low quality rendering and utilize new samples drawn accord-
ing to the sampling map to enhance the results of a subsequent re-
construction/denoising pass. We feed in the 12-spp rendering (plus
G-buffers) and utilize the sampling map to decide which active pix-
els are refined first. Note that compared to the original approach
by Weiss et al., we disable temporal coherence due to the lack of a
flow field, and downsample the 42-super-sampled sampling map by
summing over 4× 4 pixel blocks. Lastly, we also plot the optimal
refinement strategy that assumes knowledge of the 322-spp render-
ing and ranks pixels w.r.t. their deviation to the 12-spp rendering.

The results show that our approach yields superior sampling
patterns compared to Weiss et al. [WITW20] and Kuznetsov et
al. [KKR18]. However, this is not entirely surprising, since their
sampling masks were trained for different rendering algorithms.
When refining at least 13% of active pixels, PatchNet performs con-
sistently better than all reference methods, going as far as yielding
half the MSE at 30% pixels for Airplane when comparing against
SS-Variance. Further, except for San Miguel, PatchNet performs
almost equally well independently of the dataset it was trained on.
That is, PatchNet generalizes to other models. For San Miguel,
training on other datasets yields notable worse results, although
still being better than SS-Variance. We argue that San Miguel is the
most complex dataset of all, including rich geometry, texture and
advanced lighting. Hence, one can generalize from San Miguel, but
not necessarily towards San Miguel.

Fig. 2e-h shows that PatchNet can refine porous geometry such
as the airplane’s tail fin. However, SS-Variance fails to detect the
fine grid structure as it is lost in the coarse voxel representation
rendered to screen. Similarly, as shown in Fig. 4, it cannot detect
erroneous renderings of table surfaces in the San Miguel scene,
where the unlit tabletop bleeds dark color into the bright tablecloth
it is covered by. PatchNet detects the errors up to a certain distance,
depending on the look-ahead parameter ∆ℓ of PatchNet.
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Figure 3: Evaluations on (a) Airplane, (b) San Miguel and (c)
Sponza showing refinement quality in MSE for various refinement
strategies plotted over per frame budgets from 0% to 100%. Results
on Power Plant are similar to Airplane. Lower means better.
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Figure 4: San Miguel courtyard rendered at various distances from
close (block 1) to far (block 3). First image in block indicates the
actual error between 12-spp and 322-spp renderings. Other images
in block depict refinement patterns (redder areas are refined first)
of strategies that fail (Image 2) or succeed (Image 3) in detecting
errors at tablecloths. SS-Var stands for SS-Variance. PN-∆x repre-
sents PatchNet trained with a look-ahead of ∆ℓ= x.

4. Conclusion

We have presented an encoder/decoder network PatchNet that
learns model independent patch codes to predict super-sampling
patterns from coarse-scale geometry. Our experiments have shown
that patterns predicted by our architecture are significantly more ef-
fective than those of reference methods, in particular for medium
to high refinement counts, and that PatchNet generalizes to models
not seen during training.

In the future, we intend to reduce inference timings during ren-
dering by storing and traversing the SVO on the GPU, as well as
evaluating the decoder in shared GPU memory. Nonetheless, we
expect that inference timings will be inferior to brute-force 4x-su-
per-sampling when casting primary rays only. As a next step, we in-
tend to utilize PatchNet in recursive ray tracing applications, where
samples are far more costly to acquire. This makes brute-force
super-sampling less attractive than invoking PatchNet to identify
dispensable samples. Lastly, we plan to apply model indepen-
dent patch codes for model compression, learning spatially varying
BSSRDF models, and predicting cone split events at rough and/or
pointy surfaces in differential cone-tracing.
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