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Abstract
We present an original algorithm to construct Voronoi tessellations on surfaces from a set of depth maps. Based on a local graph-
based structure, where each local graph spans one depth map, our algorithm is able to compute partial Voronoi diagrams (one
per scan), and then to merge/update them into a single and globally consistent Voronoi diagram. Our first results show that
this algorithm is particularly promising for improving the sampling quality of massive point clouds or for reconstructing very
large-scale scenes, with low and manageable memory consumption.

CCS Concepts
• Computing methodologies → Point-based models; Parametric curve and surface models;

1. Introduction

3D point clouds produced during building or large site scanning
campaigns can contain billions of points. To obtain them, dozens
of acquisitions are registered and merged. Processing and manipu-
lation of surfaces modeled by these point clouds (called underlying
surfaces from now on) are tricky. One reason is the lack of struc-
ture, which complicates any processing requiring a local neighbor-
hood on the sampled surfaces. A second reason is the volume of
data which can be prohibitive, and thus requires on-the-fly process-
ing and/or out-of-core implementations. Recently, a data structure
based on interconnected local graphs was proposed [BPA20] for
processing point clouds obtained by aggregation of multiple ac-
quisitions. By taking advantage of depth map connectivity, of lo-
cal processings and of an out-of-core implementation, this struc-
ture handles massive 3D point clouds on any computer, regard-
less of its RAM capacity. We present a novel algorithm based on
this structure, which constructs Voronoi diagrams on the underly-
ing surface of point clouds. The overall principle (Figure 1) is to
construct one partial Voronoi diagram per local graph, and then to
merge/update them into a single and globally coherent Voronoi di-
agram, with a special attention on overlapping regions. By adding
a relaxation stage, centroidal Voronoi tessellations can also be pro-
vided. Many applications can benefit from this algorithm. In the
experimental section, we show for example that the sampling qual-
ity of 3D scenes containing hundreds of millions of points can be
improved with a low and controllable memory consumption, but
also to obtain high quality meshes of scanned surfaces.

† This work was supported by a grant from Région Sud (France).

(a) Partial Voronoi di-
agram of one graph.

(b) Merging of all the
partial diagrams.

(c) Updating in the
common zones.

Figure 1: Local graph-based computation of a global Voronoi dia-
gram on a point-based surface.

2. Basics of Centroidal Voronoi diagrams

Let us define the Voronoi tessellation (VT) of a metric space (M,d)
as the partition of the space M constructed from a set of sites S ⊆
M, such that each Voronoi cell (VC) Ci contains the set of points
x ∈ M closer to si than to any other site: Ci = {x ∈ M|d(x,si) <
d(x,s j),∀s j ∈ S,s j 6= si}. A VT is called Centroidal (CVT) if each
site si corresponds to the centroid of its cell. One simple method
to obtain a CVT is called Lloyd relaxation [Llo82]. Starting from
an initial set of sites, two steps are alternated until convergence: i)
the VT is computed; ii) each site is moved to the centroid of its cell
generated at the previous step.

3. Structuration of underlying surfaces with local graphs

Figure 2 gives an overview of the workflow proposed in [BPA20]
for structuring an underlying surface sampled by a point cloud
obtained from N depth maps. For each depth map D j (D j, j ∈
{0,1, ..,N}) representing a specific point of view (Figure 2 (a)), a
local undirect graph G j = (V j,E j) is constructed (Figure 2 (b)). V j
is a set of vertices, where each vertex is associated to one 3D point

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

EUROGRAPHICS 2022/ N. Pelechano and D. Vanderhaeghe

DOI: 10.2312/egs.20221030 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-0573-9141
https://orcid.org/0000-0001-9885-6445
https://orcid.org/0000-0002-7012-1735
https://doi.org/10.2312/egs.20221030


Arnaud Bletterer, Frédéric Payan, and Marc Antonini / Graph-based Computation of Voronoi Diagrams on Large-scale Point-based Surfaces

Figure 2: Workflow to structure aggregated point clouds with in-
terconnected local graphs [BPA20].

of the cloud, and E j a set of edges linking the vertices, according
to the depth map connectivity. By segmentation, some edges are
removed in each graph to identify distinct elements in the scanned
surfaces. The local graphs are then interconnected (Figure 2 (c)) by
matching the vertices present in overlapping regions (green dots).
To avoid redundant operations in these regions, each redundant
point is finally assigned to one graph only (Figure 2 (d)). After
that, V j is composed of two subsets: V+

j , containing the active ver-
tices on which the operations/computations are done when G j is
processed, and V−j the passive vertices that will retrieve the results
of operations/computations made on the active vertices associated
to them in other graphs. Hence, a set of interconnected and non-
redundant local graphs (Figure 2 (e)) spans the entire point cloud.

4. Computation of CVT from one depth map

Considering only one acquisition, a graph G(V,E) is first computed
with [BPA20]. We now explain how a CVT can be computed on the
underlying surface by using this graph.
Sites initialization The initial position of sites can be determined in
different ways, but it is known that a uniform pattern onto the sur-
face limits the number of iterations during relaxation. As a Poisson-
disk distribution provides an "almost uniform" sampling pattern,
we use the graph-based sampling method proposed in [BPA20] to
get the initial position of sites.
VC computation To determine the VCs, we were inspired by
[PPA16] that proposes a parallelized algorithm on GPU for com-
puting VTs on stereoscopic images. We generalized this algo-
rithm to graphs, which allows considering any kind of connectivity.
Our algorithm consists in computing each VC by region growing
around each site in parallel. As the space M to partition is a sur-
face, the metric d considered is the geodesic distance, here imple-
mented as a Dijkstra propagation on the graph with weights on the
edges. Figure 3 illustrates our graph-based partitioning technique,
by showing the VT computed on one part of the point cloud Templo
Mayor (courtesy of CyArk/Google Open Heritage Program [Goo])
by using only one depth map. As the partition is computed in the
parameterization domain defined by the depth map, we can see that
the VT is faithful to the underlying surface of the point cloud, and
not to the ambient 3D space in which the point cloud is embedded.
Centroids computation Once the VT is obtained, the centroid is

computed for each cell, and then the closest vertex of V from that
centroid is selected.

5. Computation of CVT from several depth maps

We now extend this technique to point clouds constructed from a
set of acquisitions. As input, a set of graphs G = {G1,G2, ...,GN}

Figure 3: VT of one region of Templo Mayor (courtesy of [Goo])
corresponding to one depth map. The partition is shown on the
depth map (left), and in 3D space (right).

is given, each graph representing one patch of the surface sampled
by the point cloud. We remind that these graphs are interconnected
in the overlapping regions, as explained in Section 3. This structure
describes the entire point cloud piecewisely, it was thus natural to
develop an algorithm that first computes one local CVT per graph,
before merging and updating all these CVTs to get a global CVT.

5.1. Theoretical foundations

Such an approach is possible because of the local properties of a
VT. Indeed, a VC can be constructed from only a subset of sites
S′ ⊆ S surrounding it [Küh98]. As a consequence, all the sites out
of its Voronoi basin do not affect its shape (See Figure 4). By exten-

(a) (b) (c) (d)

Figure 4: (a) The dark blue VC is determined by intersecting the
half-spaces of the subset of sites S′ ⊆ S surrounding the site si; (b)
set of balls associated to these sites; (c) resulting Voronoi basin;
(d) the orange sites, out of the Voronoi basin, do not affect the cell.

sion, considering only a subspace M′ ⊆ M and the subset of sites
S′ = S∩M′, a subset of VCs can be defined globally, i. e., as if those
cells were defined on the entire space M with the knowledge of all
the sites S. The cells concerned are those whose basin is entirely
in M′ [Ble18]. Partial cells [For87] can also be defined in M′ for
sites which are between the cells globally defined and the borders
of M′ (see Figure 5). Such a cell contains all the points closer to its
respective site than to all other sites of S′ and also to the borders
of M′. The resulting partial VT, composed of globally defined cells
and of partial cells will be updated to provide the global VT, once
the space is entirely known.

5.2. Proposed workflow

Inspired by these theoretical foundations, we develop an algorithm
to compute a global VT on the underlying surface of a point cloud
structured by several interconnected local graphs. Figure 6 details
the concept with a textbook case, by considering only 2 neighbor-
ing graphs G1 and G2. By using the algorithm presented in Section
4 on each graph Gi, a partial VT can be computed on a subspace M′i
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M’ M

Figure 5: Partial VT computed on M′ ⊆ M [For87]. Some VCs
are globally defined (blue sites), while others are partially defined
(yellow sites). The global VT will be obtained as the entire space
M and the exterior sites are known.

defined only by the active vertices V+
i . The border of M′i is depicted

by the vertices of V+
i adjacent to at least one vertex of V−i . Figure

6(a) and Figure 6(b) show the partial VT obtained on G1 and G2
respectively, composed of cells globally defined (containing blue
nodes) and cells partially defined (containing yellow nodes). The
hatched nodes are active vertices closer to the border of M′i than
to its sites (similar to the hatched zone in Figure 5 that requires the
knowledge of M−M′ to be partitioned). The white nodes represent
the passive vertices V−i that will be processed in another graph. In
a second round, each active vertex of each graph indicates to its
associated passive vertices (in the other graphs) the site to which it
is the closest, as well as the distance from this site. All the graphs
are thus informed that some vertices in the common zones already
belong to specific cells (see Figure 6(c)). In a third round, this in-
formation is considered to finalize the global partition in the areas
that were previously closer to the border than from any site (Figure
6(d)). This approach can be generalized to N graphs, as shown by
Figure 1. CVTs can be also easily constructed with this workflow,
by alternating them with centroid computations which can be done
similarly to the case of one depth map, as described in Section 4.

G1

(a)

G2

(b)

G1

(c)

G1 U G2

(d)

Figure 6: Proposed approach to compute a global VT on a graph
combining two interconnected local graphs.

6. Experimentations

Figure 7 shows VTs obtained on popular models, Egea (courtesy
of [AV]) and Armadillo (courtesy of [LGCP]), from 12 depth maps
(1024x1024 pixels), generated from 12 virtual points of view posi-
tioned regularly all around each model. The VTs are globally satis-
factory, and do not suffer from artifacts in the overlapping regions,
thanks to the distinction between active and passive vertices during
computations.

Figure 7: VT computed on Egea and Armadillo with our approach.

To further appreciate the efficiency of our workflow, Figure 8
shows the Poison-disk uniform distribution obtained with [BPA20]
on Dragon (courtesy of [LGCP]) on the left, and the same dis-
tribution after convergence of our CVT on the right. We can no-
tice that the relaxation leads to a more uniform distribution, as ex-
pected. Figure 9 now shows close views of adaptive distributions
(the graph edges are weighted by the L2 norm and the local curva-
ture, as in [BPA20]) on real life data (Eim Ya Kyaung (1.337 billion
points, 58 acquisitions, courtesy of [Goo]) generated with [BPA20]
on the left, and with our CVT approach on the right. Both methods
tend to attract the sites in the most curved regions, which empha-
sizes the fine details of surfaces, but our CVT technique also al-
lows to distribute the vertices more uniformly all over the surface,
which is interesting to improve sampling quality of point clouds.

Figure 8: Poisson-disk distributions [BPA20] on Dragon (left), and
the same distributions after convergence of our CVT technique.
Top/bottom: two distinct sampling densities.
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Figure 9: Left: adaptive Poisson-disk distributions [BPA20]; right:
same distributions after convergence of the CVT, on parts of Eim
Ya Kyaung (1.337 billion points, 58 acquisitions).

All those sampling patterns have been analysed with [WW11]. The
results, which can be seen in [Ble18], show that the sampling dis-
tributions are improved by our relaxation algorithm. Once a VT is
generated, one can obtain a triangulation from the computed parti-
tion by connecting the sites of neighboring cells. Figure 10 shows
the reconstruction of Meeting House (courtesy of [Goo]) from an
adaptive Poisson-disk distribution [BPA20], and the same recon-
struction after convergence of the CVT. The histograms, showing
the respective angle distribution, attest that the mesh quality is glob-
ally improved by our CVT. Finally, we present computation times
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Figure 10: Left: Meeting House (457 million points, 22 acqui-
sitions) reconstructed from an adaptive Poisson-disk distribution
[BPA20]; right : after convergence of the CVT. The histograms
show the angle distribution of each reconstruction.

and peak memories reached when constructing the CVT from a
given set of sites, of two real life data: Meeting House (interior),
which contains 457 million points for 22 acquisitions, and Templo
Mayor, which contains 349 million points for 17 acquisitions. De-
spite hundreds of millions of points as input, our algorithm requires
less than 5GiB (2.3GiB and 4.4 GiB respectively), to construct a
global CVT from the original depth maps (8192× 8192 pixels).
The corresponding computation times are 37mn and 1h05mn, re-

spectively. Additionally, as shown in [BPA20], depth maps can be
subdivided before structuring the data, to further reduce the peak
memory. For example, with depth maps cut into tiles of dimension
(4096× 4096), similar CVTs can be obtained with less than 2GiB
(1.3GiB and 2GiB respectively), at the expense of longer compu-
tation times (1h56mn and 2h39mn, respectively). This is one inter-
esting feature of our algorithm: the memory peak can be managed,
so that it runs even on computers with limited RAM capacities.

7. Conclusion

We introduce a new method for computing (centroidal) Voronoi di-
agrams on large-scale point-based surfaces, generated from sets of
depth maps. The originality of our approach comes from the use of
interconnected local graphs allowing to create partial Voronoi dia-
grams, and then to merge/update them to finally get a globally con-
sistent Voronoi diagram. An out-of-core implementation makes the
processing of massive point clouds possible with an extremely low
memory cost, even on point clouds composed of hundreds of mil-
lions of samples. This work is in progress, but our first results are
really encouraging. Nevertheless, our method can be improved. For
example, some triangulations, in particular with complex scenes,
may suffer from artifacts (non-manifold elements, holes, etc.), due
to the discrete aspect of our method and variable sampling densi-
ties between neighboring graphs. Our next step is thus to integrate
validity tests on local VT configurations [Gus07], and/or to add a
post-processing technique to fill remaining holes [BL17].
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