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Abstract
There are several methods that reconstruct surfaces from volume data by generating triangle or quad meshes on the dual of
the uniform grid. Those methods often provide meshes with better quality than the famous marching cubes. However, they have
a common issue: the meshes are not guaranteed to be manifold. We address this issue by presenting a post-processing routine
that resolves all non-manifold edges with local refinement. New vertices are positioned on the trilinear interpolant. We verify
our method on a wide range of data sets and show that we are capable of resolving all non-manifold issues.

CCS Concepts
• Computing methodologies → Shape analysis; Mesh geometry models; Parallel algorithms;

1. Introduction

Surface reconstruction from volume data is a well covered problem
in computer graphics and medical imaging. The sampled data is
often approximated with the trilinear interpolant,

T (u,v,w) =

(1−w)[ f0(1−u)(1− v)+ f1u(1− v)

+ f2(1−u)v+ f3uv]

+w[ f4(1−u)(1− v)+ f5u(1− v)

+ f6(1−u)v+ f7uv], (1)

where (u,v,w) ∈ [0,1)3 are the local coordinates within a cell of
the volume data. The scalar value at the cell vertex vi is denoted by
fi. The reconstructed surface is determined by the iso-value ι0,

Sι0 := {(u,v,w) |T (u,v,w) = ι0}. (2)

The trilinear interpolant is continuous across cell borders, i.e. the
reconstructed surface is C0-continuous.

Marching Cubes (MC) [LC87] is probably the most famous
surface-reconstruction method. It approximates the surface with tri-
angles in each cell of the volume data independently and there-
fore it can be easily parallelized. However, meshes generated with
MC have some drawbacks. They usually contain poorly shaped
triangles, i.e. small angles, and are not watertight, due to incon-
sistencies across cell borders. Several methods were presented in
the last decades that extended MC. The issue with non-watertight
meshes was fixed with the asymptotic decider that resolves ambigu-
ous cases at cell borders [NH91, LLVT03]. Furthermore, within a
cell, MC does not represent the topology of the iso-surface cor-
rectly. There are several methods that aim for topological correct-
ness [Gro16, Gro17, RWY05]. Nevertheless, the issue with poorly

shaped triangles remains. Other methods specifically constructed
for watertight and 2-manifold surfaces produce very good results
but are hard to efficiently parallelize due to their dependence on
octrees or the generation of tetrahedral meshes [HZG20, TPG99].

Starting with the Surface Nets method [Gib98], alternatives to
the classical MC came up that consider the dual of the marching
cubes surfaces. While MC generates triangles for the iso-surface
within a cell, dual methods approximate the iso-surface with ver-
tices that are then connected to elements across cell borders. If the
volume data is stored in a voxel grid, then the resulting mesh will be
quad only. This is advantageous as quad meshes require less mem-
ory than triangle meshes but even when the quads are split into
triangles, e.g. for visualization, the resulting meshes are of better
quality. A comparison between MC and Surface Nets was given
by de Bruin et al. [dBVP∗00]. The idea of Surface Nets was ex-
tended by Nielson who brought up the name Dual Marching Cubes
(DMC) [Nie04]. This method produces manifold meshes but it does
not follow the topology of the trilinear interpolant as the method
relies on a look-up table. A variation of this method suitable for
parallel implementation was presented in [LS12].

The method Dual Contouring [JLSW02] also produces one ver-
tex for each cube that contains an iso-surface and has therefore
some similarities with Surface Nets. The vertex placement has
the objective of representing sharp edges correctly by computing
the vertex positions with a quadric error function. A major dif-
ference to Surface Nets is that Dual Contouring was designed for
octrees. Several methods were built on the idea of Dual Contour-
ing [ZHK04, SW04, SJW07, KKDH07, RSA16]. Octrees have the
advantage that manifoldness can be always achieved by refine-
ment. However, implementing octrees efficiently is challenging, es-
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(a) voxel edge with its four ad-
jacent cells

(b) quad around voxel edge

Figure 1: Generation of quads in the DMC method.

pecially on GPUs. Additionally, the methods loose the ability to
produce quad meshes, when using octrees.

Another Dual Marching Cubes method was presented in [GZ21].
This method considers the fact that the iso-surface can have several
independent branches within one cell. Each branch is represented
by its own vertex. This solves some of the topological issues of
Dual Contouring. For example, non-manifold vertices can only ap-
pear at boundaries. Additionally, it is rather simple to implement
and parallelize this method as it works with voxel grids instead of
octrees.

In this work, we discuss the appearance of non-manifold edges in
the DMC method from [GZ21] and present a post-processing step
to remove them. We also show how to remove non-manifold ver-
tices at boundaries with a simple pre-processing step. With this two
extensions we produced manifold meshes in all our test cases. Our
method was implemented in CUDA and is available on GitHub†.

2. Dual Marching Cubes

Our post-processing step for resolving non-manifold edges is ap-
plicable to any of the DMC methods mentioned in Section 1. How-
ever, we restrict ourselves to the method presented in [GZ21]. The
advantage of this DMC method is that it does not produce any non-
manifold vertices on the interior of the volume data. Thus, we only
need to consider non-manifold edges. From here on, whenever we
use the term DMC, we refer to this method.

The edges in a voxel grid always have four adjacent cells. DMC
generates a quad for each voxel edge that is intersected by the iso-
surface, Figure 1a. The iso-surface within each cell is represented
by a vertex. The quad is formed by connecting the vertices of the
four cells, Figure 1b. Thus, the resulting mesh will be quad only.

Non-manifold edges appear, when the iso-surfaces of two neigh-
boring cells form a tunnel, Figure 2a. In that case, quads are gen-
erated for all four edges of the face in between the two cells and
the tunnel is replaced by a non-manifold edge, Figure 2b. At the
boundary of the voxel grid, non-manifold edges with only three in-
cident quads can appear because the fourth quad would protrude
the grid. Also non-manifold vertices near boundaries are caused by
that. More details on such boundary cases are given in Section 4.

† https://github.com/PhiliGuertler/ManifoldDMC

(a) tunnel (b) non-manifold edge (c) resolved edge

Figure 2: DMC produces a non-manifold edge if the iso-surface
forms a tunnel in between two cells. We resolve the non-
manifoldness by restoring the tunnel of the iso-surface.

(a) tunnel (b) asymptotic decider (c) correct topology

Figure 3: We use the asymptotic decider on the face in between the
two cells for finding the orientation of the iso-surface tunnel.

3. Non-Manifold Edges

Non-manifold edges (NMEs) are resolved by restoring the tunnel
present in the iso-surface, Figure 2. First, the correct orientation of
the iso-surface tunnel is determined with the asymptotic decider,
Figures 3a and 3b. Thus, we get two face-pairs, as every NME con-
sists of four incident faces, Figure 3c. Next, all faces are subdi-
vided, Figure 4a. The faces incident to the NME are removed and
vertices are merged according to the face-pairs, Figure 4b.

The procedure of subdivision, face removal, and vertex merging
is straight forward as long as there are no other NMEs interfer-
ing. However, NMEs can be adjacent to each other. In such a case,
several vertices have to be merged into one, Figure 4c. Therefore,
we need to store all vertices that need to be merged in a list. Up
to twelve vertices can be merged into one. An example for that is
given in Figure 5 where a single vertex is incident to 6 NMEs.

In some rare cases, a NME is created in the merging step. A
configuration consisting of five adjacent NMEs is given in Figure 6.
The NME that is colored in light blue in the figure appears again

(a) subdivision (b) merge (c) adjacent NMEs

Figure 4: Geometric manifoldness is achieved by subdividing
the quads and merging the nodes that surround the former non-
manifold edge.
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(a) NMEs (b) subdivision (c) face removal (d) merge

Figure 5: A case where six NMEs are incident to a single vertex.

(a) (b) (c)

(d) (e) (f)

Figure 6: Sometimes, not all NMEs can be resolved at once. We
run our method iteratively to ensure that no more NMEs are left.

after the merging step, Figure 6d. The process is repeated iteratively
until all NMEs are removed. In our tests, we never needed more
than two iterations for removing all NMEs.

4. Non-Manifoldness on Boundaries

DMC generates quads across voxel edges. Therefore, boundaries
cause some special cases that include non-manifold vertices, Fig-
ure 7c, and NMEs with only three incident edges. When the iso-
surface intersects with a voxel edge at the boundary, DMC does not
generate a quad as it would on the interior. Thus, NMEs in cells at
the boundary are missing one quad. The fact that DMC does not
generate quads at boundaries also causes non-manifold vertices.

All boundary issues can be resolved by adding another layer of
cells around the voxel grid and copying the scalar values from the
old to the new boundary, Figure 7a. A requirement for NMEs is
that one face is intersected twice by the same iso-surface branch.
Duplicating the boundary scalar values prohibits this case in the
new boundary cells, Figure 7b. NMEs that had only three incident
faces now have four. Irregular vertices disappear completely be-
cause their one ring is closed. Thus, only NMEs with four incident
edges remain and they can be resolved with the procedure described
in Section 3.

5. Results

We tested our method on more than twenty qualitatively different
data sets, all presented in [GZ21]. Here, we restrict ourselves to the
ten most interesting results, Table 1. They are visualized in Fig-
ure 8. The data sets vary significantly in the number of NMEs.

(a) (b) (c)

Figure 7: (a),(b) Extending the grid. Red edges correspond to the
old boundaries. (c) A non-manifold vertex. Purple quads are not
generated as they are partially outside the domain.

Data Set ι0 Size N4 N3 NV
Baby 147.5 (2562,98) 113 0 1
Bruce 147.5 (2562,156) 37,672 593 1,121
Angio 47 (384,512,80) 1,066 73 257
M-Head 105 (2563) 3,618 5 13
Carp 1,500 (2562,512) 13 0 0
Abdomen 80 (5122,147) 23,762 35 116
cenovix 900 (5122,361) 11,721 68 163
head 900 (5122,641) 22,275 0 0
mecanix 1,200 (5122,743) 8,487 3 22
becken 900 (5122,1,047) 36 0 0

Table 1: Data sets for evaluating our method for removing non-
manifoldness. The last three columns show the number of non-
manifold edges with four incident quads (N4), three incident quads
(N3), and the number of non-manifold vertices (NV).

The additional layer of cells with the duplicated boundary values
increase the memory consumption slightly. The relatively largest
increase was measured for the data set Baby from 25.69 MB to
26.63 MB which is 3.64%. The worst runtime for resolving NMEs
was measured on mesh head and was 668.5ms. The whole genera-
tion process took 754.6ms. All tests were performed on an Nvidia
Geforce GTX 1660ti.

All meshes from Table 1 were generated with DMC and con-
tain NMEs with four incident faces, Table 1. Most of them also
contain non-manifold vertices and NMEs with three incident faces.
Extending the grid removed all non-manifold vertices and NMEs

(a) Baby (b) Bruce (c) Angio (d) M-Head (e) Carp

(f) Abdomen (g) cenovix (h) Head (i) mecanix (j) Becken

Figure 8: Meshes generated with DMC for the data sets in Table 1.
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with three incident faces in all tests. Latest after two iterations of
the NME removal all meshes from our experiments were manifold.

We show correctness of the mesh topology after post-processing
by comparing them to the results of DMC on refined voxel grids,
where the scalar values at new voxel vertices were computed by
trilinear interpolation. Figures 9 to 12 show first the non-manifold
edges, then the solution of post-processing, and finally the refined
grid. All examples show geometry from our test data sets, Table 1.
In all cases, the topology of the refined and the post-processed
meshes is identical.

Figure 9: Resolving a NME in comparison with the refined grid.

Figure 10: Resolving a quad with three NMEs in comparison with
the refined grid.

Figure 11: Resolving a quad with four NMEs in comparison with
the refined grid.

6. Conclusions

We presented a method for resolving non-manifoldness on grids
generated with dual marching cubes methods. Non-manifold edges
and vertices were resolved in all our tests and topology was recon-
structed correctly according to the iso-surface.
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