A Halfedge Refinement Rule for Parallel Loop Subdivision

Supplemental Material: Implementation Cheat Sheet

Kenneth Vanhoey Jonathan Dupuy
Unity Technologies Unity Technologies

In this document, we provide “cheat sheets” to visually follow a step of the algorithm and facilitate implementation.

In Sec. [1] we provide illustrations that help follow the explanations of the main paper’s Section 2.1. That is, we
compile each crease configuration for edges and vertices. Each such configuration leads to a different vertex point
computation during refinement.

In Sec.[2]we provide our halfedge and crease refinement algebraic rules exhaustively. To make things more intuitive,
we provide an example for each rule based on the mesh illustrated above the rules.

1 Crease configurations

Semi-sharp creases provide a useful design tool for artists, as motivated in seminal papers [HDD*94, [DKT98|] and the
OpenSubdiv documentatio Sec. 2.1 of our main paper discusses how we compute the vertex points of a mesh under
Loop subdivision. Similarly to OpenSubdiv, the exact rule we apply depends on local crease configurations.

In Section we provide a visual classification of all possible crease configurations for edges and vertices. In
Section[1.2] we illustrate the letter notations used in describing the Vertex points calculations.

1.1 Crease configurations

Vertex Crease Configurations. The following figure provides the vertex crease type classification and associated
vertex point rule to apply for each case. Note that we depict creases as dashed lines.

Vertex Crease Type Smooth Crease Corner

O @) @) @)

Number of adjacent creases Oorl 2 > 2
(V.2) ifa>1.0
(V.4) otherwise

Vertex point subdivision rule to apply (V.3) (V1)

Edge Crease Configurations. The following figure provides the edge crease type classification and associated edge
point rule to apply for each case. Note that we draw creases as dashed lines, and vertex colors refer to their crease type.

Edge Crease Type Smooth Sharp

Edge point subdivision rule to apply (E.2)

{(E.l) ifo> 1.0

(E.3) otherwise

1.2 Ilustration of letter notations

In Section 2.1 of the main paper, we present vertex point calculation for the two types of refined points: edge points and
vertex points. These are the rules (E.x) and (V.x), respectively. To facilitate the explanation, we resorted to the letter
notations Q and R for rules (E.x) and V, S and T for rules (V.x). Below, we illustrate them.

Edge point calculation: rules (E.x) Vertex point calculation: rules (V.x)

@)
@) O

QU]
o 1 ® O o -0 O
O

S is the midpoint of the two vertex points that share
a crease edge (dashed) with the old vertex point V

Q is the midpoint of the old (thick) edge

R is the midpoint of the two opposite . .) .
T is the average of the old neighboring vertices

vertex points in both incident triangles

adjacent to V

'https://graphics.pixar.com/opensubdiv/docs/subdivision_surfaces.html#semi-sharp-creases

https://graphics.pixar.com/opensubdiv/docs/subdivision_surfaces.html#semi-sharp-creases

2 Subdivision rules

Here, we provide the exhaustive set of algebraic rules for halfedge and crease refinement. An example for each rule
is given, with the help of the illustration provided above. Creases are drawn as dashed lines in the figure. Note that
this figure is the same configuration as the teaser figure of the main paper. Notably, we have the constants H; = 39
halfedges, V; = 12 vertices and E; = 24 edges.

es A { —h
I fio ha »

. 4 B
fir (b

/ 7\
hs /' ess / hugs - \
7\ / X e 7 X h34/ es /h" e)
/\ h ! hia fa \ \ hes
'@\ \ k5 @ ,
e.

k\'"' hl(i T

v

/ K] o @ = @\
\ €3 N es7 @
/ hi . - Sd — Sd+l 5 - o e N
17 f \ ho < i 23 xhos — U24
2 \ h V] —h
n \ , 18—
56/ \ fo s (
" ho 0 / o \ / \ fro o
" g . h; e h
6 —¥ A 9 fh z\ 4 9 / 1 ey s eso hs
“ Z g ® i \ W
L S, o €20 - 2
P2 Yo e
hs = h35 ——> haos €10 U3z
\ » 5
- S fis @

Halfedge refinement rules

(a) halfedge’s twin rule (b) halfedge’s edge rule (using h’ := PRev(h)) (c) halfedge’s vertex rule (using h’ := PRev(h))

2EpGe(h if h > Twin(h
EDGE(h)r—)EDGE(3h+0):{ DGE(h) if h > Twin(h)

TwiN(h) — TWIN(3h + 0) = 3NExT(TwWIN(R)) + 2 2EDGE(h) +1 otherwise VERT(h) — VERT(3h + 0) = Vert(h)
—TwiN(3h+1) =3Hz+h —EDGE(3h+1) =2E;+h +— VERT(3h + 1) = V; + EpGE(h)
— TwWIN(3h + 2) = 3TwIN(PREV(h)) 2EDGE(R') +1 ifh’ > TwiN(k') — VERT(3h + 2) = V4 + EDGE(PREV(h))
—TwiN(3Hy; +h) =3h+1 = Epce(3h+2) = 2EDGE(K) otherwise +— VERT(3H, + h) = V; + EDGE(PREV(h))

+— EDGE(3Hy + h) =2E;+h

examples: examples: examples:

Twin(0) — {29, 117, 105, 1} EpGE(0) — {9, 48, 40, 48} VErT(0) — {0, 16, 32, 32}

Twin(11) — {5, 128, 36, 34} EpGe(11) — {8, 59, 10, 59} VErT(11) — {1, 16, 17, 17}

Crease refinement rules

(g) creases’s sharpness rule (h) crease’s next rule (using ¢’ := NEXT(c)) (i) crease’s previous rule (using ¢’ := PREV(c))

’ H —_ ’
NExT(c) +— NEXT(2¢ +0) = 2c + 1 el e SNmey(e)

o(Prev(c)) +30(c - ,

o(c) - a(2c+0) = (((o)) () —1 - if e = Previc’) Prev(c) — PReV(2¢ +0) = and ¢’ # ¢
o(NexT(c)) +30(c) Next(2c + 1) de + 2¢’ otherwise

+— NEXT(2¢ =
r—>0(20+1):<+71) , ande] ¢ — PREV(2c + 1) = 2¢
2¢’+1 otherwise
example: example: example:
o(4) = 1.8+ {0.8, 0.8} NexT(4) =1+ {9, 2} Prev(4) =5 +— {10, 8}
References

[DKT98] DxRoskE T., Kass M., TRuoNG T.: Subdivision surfaces in character animation. In SIGGRAPH ’98 (New York,
NY, USA, 1998), ACM, pp- 85-94. doi:10.1145/280814.280826!

[HDD*94] Horre H., DERoSE T., DucHAMP T., HALSTEAD M., JIN H., MCDONALD J., SCHWEITZER J., STUETZLE W.:
Piecewise smooth surface reconstruction. In SIGGRAPH °94 (New York, NY, USA, 1994), ACM, pp. 295-302.
doi:10.1145/192161.192233|

https://doi.org/10.1145/280814.280826
https://doi.org/10.1145/192161.192233

	Crease configurations
	Crease configurations
	Illustration of letter notations

	Subdivision rules

