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Abstract
Most current research on automatically captioning and describing scenes with spatial content focuses on images. We outline
that generating descriptive text for a synthesized 3D scene can be achieved via a suitable intermediate representation employed
in the synthesis algorithm. As an example, we synthesize scenes of medieval village settings, and generate their descriptions.
Our system employs graph grammars, Markov Chain Monte Carlo optimization, and a natural language generation pipeline.
Randomly placed objects are evaluated and optimized by a cost function capturing neighborhood relations, path layouts, and
collisions. Further, in a pilot study we assess the performance of our framework by comparing the generated descriptions to
others provided by human subjects. While the latter were often short and low-effort, the highest-rated ones clearly outperform
our generated ones. Nevertheless, the average of all collected human descriptions was indeed rated by the study participants
as being less accurate than the automated ones.

CCS Concepts
• Computing methodologies → Computer graphics; Natural language generation;

The scene consists of three roads meeting at 
an intersection, a group of trees, an oak tree 
and three market stands. The three market 
stands are next to the first road. The group of 
trees consists of three pine trees and three 
bushes. The first market stand consists of a 
sign to the right of a table. A big pot of stew 
is in the middle of this table. The second 
market stand consists of a sign besides of a 
table. A big pot of stew is in the middle of 
this table. The third market stand consists of 
three flowerpots on top of a table and a sign. 
This sign is to the right of this table.

Figure 1: (Left:) Example of procedurally generated 3D scene.
(Right:) Automatically generated description with our framework.

1. Introduction

Describing the spatial world around us is a common task for hu-
mans. When describing entities in computer-based environments,
automated methods attempt to mimic the quality and accuracy of
such descriptions. Since virtual worlds are often created by algo-
rithms [STBB14], one could leverage metadata and intermediate
representations produced during such processes to improve auto-
mated descriptions. Thus, we have created a pipeline to automat-
ically generate 3D scenes of medieval villages; and combined it
with a natural language generator to add a textual description (see
example in Fig. 1). Our main contributions are the integration of
the proof-of-concept framework, leveraging scene synthesis and
natural language generation (NLG) techniques, as well as a pilot
study to assess its usability. A limitation of our current implemen-
tation is the necessary manual definition of the scene graph gram-
mars. Our system represents a base for further development; possi-
ble future applications could, for instance, be automatic high level

annotations of virtual worlds for visually impaired users as well
as procedural generation of narrations of virtual gaming charac-
ters. Note that in contrast to image captioning, our system is not
bound to a single viewpoint. Below, we first outline the framework
– 3D scene content and spatial relationships between objects are
initially formalized in a relationship graph (see example in Fig. 2);
the scene layout is then produced using Metropolis Hastings sam-
pling. In parallel, a basic textual description is synthesized using
an NLG pipeline. In the pilot user study we then compare human
and machine descriptions of the 3D scenes. We investigate whether
the combined approach can produce descriptions that are perceived
as accurate regarding scene objects and their relationships and are
possibly even preferred over human descriptions. Further details on
the system and study are available in the supplementary material.

2. Related Work

Some initial work has been carried out on automatically creating
textual descriptions for generated 3D scenes. A closely related do-
main is captioning of images (see a recent survey in [HSSL19]),
where projections of (real or virtual) 3D scenes are denoted. In
NLG, referring expression generation has been focused recently. It
targets the unambiguous description of individual objects in spe-
cific contexts. For objects in images, often deep learning is uti-
lized [MHT∗16]. Further, 3D scene synthesis by arranging objects
has received quite some attention; with recent approaches being
data-driven, e.g. using large datasets of indoor scene layouts as
priors [WLW∗19, ZYM∗20]; but also other priors, such as fac-
tor graphs [YYW∗12] or combinations of hardcoded and example
scene extracted constraints [YYT∗11]. Finally, other recent work
allows users to provide an input text to control scene layout gener-
ation [MZP∗18] or image generation [RPG∗21].
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The scene consists of a mill 
next to a road and a pine tree. 
The mill consists of two sacks 
of flour to the right of a 
windmill building.

Figure 2: Overview of the process to generate a scene layout and its textual description from a scene relationship graph (the intermediate
representation). The latter is initially derived from a probabilistic graph grammar.

3. Generation Framework

Matching scene layouts and textual descriptions are derived by
sharing the same scene relationship graph as intermediate repre-
sentation. It contains all objects in the scene as nodes and their spa-
tial relationships as edges. Relationships are in general formulated
viewpoint-independent. Relative directions (e.g. left/right) are only
used for objects with a clearly identifiable front. This graph is de-
rived from a graph grammar [EHK92], which is non-deterministic
and has probabilities assigned to its individual rules. The gram-
mar was manually tuned to produce graphs that result in believ-
able scenes. This was done by taking artist created scene layouts
with the same assets as inspiration, deriving semantic rules from
them (e.g. that sacks of flour are usually next to a mill) and en-
coding them as graph grammar rules. For each object type in the
graph there are one or more 3D models, each annotated with meta-
data. The latter may contain textual object descriptions, connect-
ing trails (i.e. paths), and collision volumes. The scene layout is
produced by encoding the spatial relationships of the graph into
an evaluation function, which then is optimized using a Markov
Chain Monte Carlo (MCMC) method. A matching textual descrip-
tion is produced by feeding the same graph into a purpose-built
NLG pipeline. An overview of all steps is provided in Figure 2.

3D Scene Generation: The process starts with instantiating a 3D
model for each graph node and random placement in the scene. If
an object is marked to be on top of another one, its y-coordinate
(i.e. elevation) is set according to the supporting object. This leaves
the x- and z-coordinates, as well as the rotation around the y-axis
to be optimized. In addition, objects can be assigned to trails, with
an optional connection point as well as a set of control points to
be optimized. Special path objects are designed to provide either
a main road or an intersection within the scene. To obtain a graph
evaluation function yielding values in [0,1], each edge is turned
into a factor using logical connectives ( [YYW∗12]):

Equals(x,y,σ2) =N (0,∥x− y∥,σ2)
/
N (0,0,σ2);

Greater(x,y,h) = Sig(x− y,h);

Less(x,y,h) = Sig(y− x,h);

Range(x,ymin,ymax,h) = Greater(x,ymin,h)Less(x,ymax,h),

(1)

with Gaussian N (x,µ,σ2) and sigmoid function Sig(x,h) =
1/(1+e−hx); h and σ control steepness (we use h = 3.0, σ

2 = 0.1).
Next, spatial relationships vi are set, e.g., A "NextTo_NorthOf " B:

vNT _NO(A,B) = Less(d,2) ·Equals(α,0), (2)

with d the minimal separation between the collision volumes of A
and B, and α the angle between the x-axis and the vector pointing
from B to A. The product of all such factors vi finally forms the
scene evaluation function f (S) for a configuration S; taking a scene
layout as input and returning a value in [0,1]. Additional factors of
f are designed to encourage the generation of feasible trails and to
avoid overlapping objects. Five geometric helper functions and 19
object relation functions have been employed and are provided in
the supplementary material. Also note that the computation of f is
done in log-space to avoid floating point underflows.

Thus, the practically employed energy function becomes f =
e−v, with v = vr + vc + vp + vq, with v consisting of four different
constraint types: vr – encoding spatial relationships between ob-
jects; vc,vp – avoiding collisions between objects or with pathways;
vq – encouraging generation of believable pathways. The scene lay-
out is then optimized by maximizing f . MCMC is applied using
Metropolis Hastings with parallel tempering. This denotes simulat-
ing multiple Markov chains with stationary distributions matching
a distribution with a probability density function proportional to
f . Metropolis Hastings requires sampling a jumping distribution
G(S′|S), that proposes at each Markov chain step a new scene lay-
out S′ depending on the current one S. S′ is accepted with proba-
bility min

(
1, f (S′)

/
f (S)

)
as the new layout, otherwise S remains

current. The jumping distribution is sampled by randomly perform-
ing one of the following actions:

• Resample position of single object or cluster (one unit is one
meter in the scene): x′ ∼N (x,0.52), z′ ∼N (z,0.52);

• Resample angle around y-axis of single object or cluster (one
unit is one degree rotation): ϕ

′ ∼N (ϕ,102);
• Resample trail control points;
• Randomly reconnect trail to different trail.

Note that optimization is first applied in separate to smaller ob-
ject clusters in the scene relationship graph, before applying it to
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the whole scene. This accelerates the production of good scene lay-
outs. The clustering is obtained via special container objects ("Is-
PartOf " relationships) in the graph. Further, the chains are parame-
terized to explore the search space at different speeds (temperature
of 1.3i for the i-th chain); and to randomly swap information with
neighboring chains, such that scene layouts with the highest value
of f move to the lowest temperature chain. Overall, good scene
layouts are typically obtained after N = 100,000 steps, i.e. 20,000
simulation steps for each of the five Markov chains. In our unopti-
mized, single-threaded implementation this takes about one minute.

Textual Description Generation: The text is created via an NLG
pipeline, governed by hardcoded rules, following the standard
stages in [GK18]. The rules were designed according to a pre-study,
in which 10 human annotators provided 30 textual descriptions of 3
different scenes, generated using the methodology described above.
Since humans tend to group objects together, we employ the same
clusters of the scene generation to achieve a hierarchical textual de-
scription. Input to the pipeline is the scene relationship graph, a set
of fixed expressions, and some measure of importance assigned to
each object in the scene. The stages of the pipeline are:

1. Content determination: Take the set of graph nodes as entities
of the textual description; and the set of edges as a list of rela-
tionships that should be described in the text. Filter out entities
without expressions (and their connected relationships) or low
importance, as well as relationships without expression.

2. Text structuring: Construct a list of sentence prototypes: add
one sentence prototype describing which entities and clusters
are in the scene; add one prototype per cluster describing its
entities; add one prototype for each relationship to be described.
Order sentences according to cluster and object importance.

3. Sentence aggregation: Merge certain sets of sentence proto-
types, without losing information; e.g. if two sentences describe
the same spatial relationship of two distinct entities to a third
one, then the second sentence can be integrated into the first.

4. Lexicalization: Select words from the expressions assigned to
objects and from a table of expressions for spatial relationships.

5. Referring expression generation: Both subject and object of
each sentence prototype can consist of one or more entities that
need to be referred to. Referring expressions are constructed by
using the first expression that unambiguously describes a set of
objects, from an ordered list of possibilities: identification by
assigned expression, by cluster, or by numbering.

6. Linguistic realization: The sentence prototypes are finally
transformed into a list of actual sentences, adhering to English
grammar and inflection rules, using SimpleNLG [GR09].

The output is an automatic description of the 3D scenes synthe-
sized in the previous section (see example in Fig. 1). Note that the
results are deterministic with no textual variety, i.e. the same scene
relationship graph always produces the same textual description.

4. Pilot User Study

We conducted a pilot user study to assess the quality of the gener-
ated scenes and the matching descriptions, as well as to compare to
human-generated ones. Twenty-nine subjects (20 males, 9 females,
age 21–66) participated in the unpaid study. All had normal or cor-
rected vision and were non-native English speakers.

The study consisted of two sessions and lasted about half an hour
each. In the first session, subjects were first asked about five 3D
scenes in general. These were randomly selected from a pool of
twenty previously generated scenes of varying complexity. Users
could explore the virtual world. They were then asked to rate on a
5-point Likert scale their agreement with the two following state-
ments: 1) “This scene is plausible and does not contain any ob-
vious errors in the placement of objects.” and 2) “This scene is
aesthetically pleasing.” Additionally the participants provided their
own textual descriptions of the scenes, answering to the prompt
“Describe what can be seen in this scene in about five sentences.”
Thereafter, participants took part in the second session, on average
14 days later. In it the human descriptions obtained in the previous
session were leveraged, by pitting them against machine-generated
descriptions. A subset of twelve scenes from the initial set was ran-
domly selected and presented, each along with two textual descrip-
tions. In eight of the cases, a human and a machine text were shown,
in four both descriptions were by humans. The order of presenta-
tion was randomized and counter-balanced. For each description
participants were asked to rate on a 5-point Likert scale their agree-
ment with the statement “The text describes the scene accurately.”
In addition, they had to reply to a 2AFC question, indicating their
preferred description; answering to the prompt “Which textual de-
scription would you prefer?” All collected data was anonymized.

5. Results

Regarding the quality of the generated scenes, as assessed in
the first session, about 65% of the participants strongly agreed
or agreed that the scenes are plausible, while 21% disagreed or
strongly disagreed. A similar amount agreed that the scenes are
aesthetically pleasing, albeit in this case only 7% were in disagree-
ment. There was a positive correlation between the ratings of a
scene’s plausibility and its aesthetics (Pearson, ρ= 0.85, p< 0.01).
For the textual descriptions, investigated in the second session, the
machine descriptions were perceived as slightly more accurate on
average than user descriptions (t-test, p < 0.01). Figure 3 (top)
provides a visual illustration of the results. About 80% of partic-
ipants strongly agreed or agreed that a machine description was
accurate (greenish bars), while only 60% said so for the user de-
scriptions; moreover, 9% disagreed or strongly disagreed for ma-
chine descriptions, compared to 10% for user descriptions (reddish
bars). However, if for each scene only the highest rated user de-
scription were to be considered, then all users strongly agreed or
agreed that it was more accurate (bottom). Next, when partici-
pants were asked about their preference of either a random user
description or a machine-generated description, the latter was cho-
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Figure 3: Likert scale ratings of scene description accuracy (as
percentages of responses, with common zero point), separated by
source. Results are shown for machine-generated as well as all user
descriptions; and for the respective best (rated as most accurate)
user description for a specific scene.
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Figure 4: Correlation of word count & average accuracy rating of
scene descriptions – automated (red) vs. human-generated (blue).

sen in 51% of the cases. No statistically significant differences were
found regarding the preference (t-test, p = 0.62); both when choos-
ing between two random user descriptions as well as between a
user description and a machine description. Thus, machine gen-
erated descriptions were of similar popularity as the average user
provided ones. Notably, in 10% of cases participants preferred a
description, which they previously had judged to be less accurate.
In our study, the textual descriptions provided by users consisted
on average of 56 words, while machine descriptions were longer
at 127 words. In general, short descriptions were usually perceived
to not be very accurate (see Figure 4). For the user descriptions,
word count correlates with perceived accuracy (Pearson, ρ = 0.62,
p< 0.01); however, that was not found for the machine descriptions
(Pearson, p = 0.83). Still, the length gives machine descriptions an
advantage. In fact, normalizing the word count of both groups to
the average (91 words), by selecting only the shortest machine de-
scriptions and longest user descriptions, yields a higher accuracy
rating for the latter. Most user descriptions were shorter than asked
for (≤ 5 sentences). In post-hoc questionnaires, many participants
stated that they were able to tell which description was machine-
generated; however, sometimes they still preferred the latter.

6. Discussion & Conclusion

The scenes produced can be plausible and aesthetically pleasing,
however, their variety and quality is limited by complexity of the
graph grammar employed. Failure cases exist, and scenes are usu-
ally problematic due to objects intersecting one another or the path
layout being implausible or just different than planned in the in-
termediate representation. In contrast to state of the art scene syn-
thesis works that rely on machine learning [ZYM∗20, WLW∗19],
our method is not able to leverage existing human knowledge about
proper object placement, it all must be encoded in the graph gram-
mar. Constructing the grammar and annotating the objects with col-
lision volumes and language expressions is time-consuming, how-
ever it allows for scene layout synthesis in domains where no large
datasets exist yet and is more time-efficient than creating a new
dataset. Taking a qualitative look at the least accurate machine de-
scriptions reveals that these tend to belong to scenes where the lay-
out violated one or more constraints of the scene relationship graph.
In contrast, poorly rated user descriptions tend to contain spelling
and grammatical errors, and be somewhat shallow, e.g. only enu-
merating objects, but not their relation. On the other hand, highly
rated user descriptions often describe the scenes in fewer sentences
than the machine descriptions; still, they contain broad information

on individual scene objects and their spatial relationships. The lim-
itation to objects, spatial relationships between them, and clusters
in our intermediate representation makes generated descriptions in-
herently weaker than very accurate human descriptions, since they
can infer additional context from scene elements. The synthesized
texts often appear as more lengthy and tedious than human ones.

We have presented a proof-of-concept system which integrates
several established techniques to generate 3D scenes of medieval
villages as well as matching automated textual descriptions. In a pi-
lot user study a majority of the generated scene layouts were found
aesthetically pleasing and believable by participants. The textual
descriptions were deemed accurate in 80% of the cases and per-
formed better than the average description participants themselves
gave for a scene during the study, somewhat caused by the users
giving shorter descriptions than asked for. Machine descriptions are
not competitive with the accuracy of the best human descriptions
given in the study; and are easily identified as machine-generated.

Source Code at https://github.com/JulianMH/EG22-Scene-Text
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