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Figure 1: Frames of the Bistro scene (left) and the Sponza scene (right) with complex light scenarios are rendered with 1 spp using Path-
Tracing (PT) and our Path-Guiding (PG) solution, and also with 2048 spp for reference. Notice the decrease in overall noise level for
diffuse and specular surfaces, the ability of our algorithm to capture high-frequency indirect shadows just relying on 1 spp. Also, there is a
slight performance boost. The images were rendered at 1080p resolution on a high-end desktop machine with RTX 2070 using the Falcor

framework [NBW20].

Abstract

Path-Guiding algorithms for sampling scattering directions can drastically decrease the variance of Monte Carlo estimators of
Light Transport Equation, but their production usage was limited to offline rendering because of memory and computational
limitations. We introduce a new robust screen-space technique that is based on online learning of parametric mixture models for
guiding the real-time path-tracing algorithm. It requires storing of 8 parameters for every pixel, achieves a reduction of HLIP
metric up to 4 times with 1 spp rendering. Also, it consumes less than 1.5ms on RTX 2070 for 1080p and reduces path-tracing
timings by generating more coherent rays by about 5% on average. Moreover, it leads to significant bias reduction and a lower

level of flickering of SVGF output.

CCS Concepts
* Computing methodologies — Ray tracing;

1. Introduction

The main goal of path-tracing is to calculate the solution of the
Light Transport Equation [Kaj86]:

Lo(x,00) = Le(x, @) + /H L, 01)fy (5,05, 00)cos(8:) e (1)

Here Le(x,®,) is the radiance emitted from a point x in a direction
o, Li(x,®;) is the incoming radiance from ;, f; is the Bidirec-
tional reflectance distribution function (BRDF) and 6; is the angle
between the surface normal at x and ;. Using, the Monte Carlo
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simulation method for solving it [Vea98] leads to high variance.
Usually, Importance Sampling techniques are used for sampling ®;
direction to decrease the variance, but they only take into account
the BRDF term of Eq. 1 and lead to unpleasant results in complex
light cases. So, we need to guide the process of generating scat-
tering direction based on the L;(x, ®;)cos(0;) [VKv*14] [MGN17]
term, too, especially for real-time ray-tracing with a limited sam-
ples budget.

In this paper, we suggest storing parameters of parametric mix-
ture models [VKv*14] for every pixel in additional 2D textures I’
and using them for guiding. Mixture model D, ;, for a pixel p,,j, is
based on the BRDF distribution of its surface x,,;, and one lobe 2D
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Gaussian Distribution:

—1 —1
Dmh(mi) = JTW,hN(]w ((Di)aﬁlw?m Zw,h)"'Tl-'w,hfr (xw,hv ;, 0)()) 2)

where ), is a mean, X, is a covariance matrix, T,,;, is a mix-
ing coefficient, n;}l =1-m,;, and M is Shirley and Chiu area-
preserving mapping [SC97] from a 2D unit square to a 3D unit
hemisphere, N(x,u,X) is the probability density function of normal
distribution. This technique ensures supporting arbitrary scenes, the
ability to train models iteratively by re-projecting data from old
frames, and robust adaptive Multiple Importance Sampling [VG95]
for achieving results no worse than using default BRDF sampling.
Our solution leads to a decrease in the overall level of noise (Figure
1) and does not impose any technical limitations on scenes materi-
als, geometry and etc.
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Figure 2: Firstly, we trace a ray from pixel p 1 to scene with direc-
tion —®, and get an intersection in x| | point respectively. Then al-
gorithm loads parameters of mixture models from the frame buffer
I'(1,1) for sampling first scattering direction ®;, traces a ray from
X1,1 to ;, and intersects some surface in yy 1 point. We save y

and estimated L(x; 1,®;) as Virtual Point Light in the I1(1,1) frame
buffer. In the second training stage, we estimate the luminance of
Li(x1 1,0) fr(x1,1,®;, o )cos(6;) by accessing 1, use it and w; for
training mixture model of x| by Expectation-Maximization (EM)
algorithm in on-line fashion and save updated params in T'(1,1).

Also we use VPL of close pixels (poo, po,1 in this example) for
faster training.

2. Previous Work

The majority of previous works about path guiding were based on
partitioning rendering scenes by some complex spatial structure
on small cells and iteratively estimating spherical or hemispher-
ical incoming radiance distribution for their internal surfaces by
several approaches [MGN17] [VKv*14] [DHD20] [RGH*20]. The
authors of [VKv*14] rely on parametric mixture models for rep-
resenting the incoming radiance, and they developed an algorithm
for estimating model parameters in an online fashion with the sup-
port of weighted samples by radiance values. We use the same
scheme with adaptive BRDF sampling and efficient implementa-
tion for real-time rendering based on screen space buffers for gen-
erating the first scattering direction [BMDS19]. Also, we suggest
using Virtual Point Lights (VPL) of neighboring pixels for faster
training [Kel97] as in the Restir GI algorithm [OLK*21].

3. Path-Guiding Pipeline

We construct our solution based on the default path tracing algo-
rithm with a subsequent training pass. It does not need any ad-
ditional precomputations and complex volumetric data structures.
Figure 2 illustrates the overall concept of our algorithm.

3.1. Path tracing pass

Algorithm inference default path tracing using rasterized G-Buffer,
but with generating first scattering direction ®; based on the learned
distribution of point xg. Parameters for constructing this distribu-
tion are requested from the texture I" with Nearest Neighbor filter-
ing, based on current pixel coordinates w, 7 and motion vectors. For
estimating mean and co-variance matrix in online fashion we only
store and update E(X),E(Y),E(X?),E(Y?),E(XY) weighted by
radiance’s luminance moments of the sampled distribution, where
[X,Y] = M~ (;) and E is the expected value. In cases of invalid
history (new visible geometry without trained distribution), we ini-
tialize new parametric models with &, , = 0.05, k.., = 0, k,,, is a
training epochs counter, and sample direction from BRDF.

For generating scattering direction, in case of sampling a uni-
form random variable { < m,, , we employ simulation of two N (0, 1)
random variables by Box-Muller method and transforming them to
Ny, Zyy, ) distribution with M mapping, in another we rely on
the BRDF strategy. At the end of the pass, the algorithm also saves
estimated L;(x,,,, ;) and a position of next surface interaction y,, ,
in additional texture IT for representing the VPL.

For achieving stable re-projecting mixture models parameters
from an old frame to a new one we use some heuristical stop-
ping weighting based on depth and normal differences, like in
[SKW™17] work. Also, it is important to take into account the dif-
ference between the hemispherical space of re-projected distribu-
tion and x,,, surface space, and transform statistics. Exactly be-
cause of that reason we can not rely on hardware-accelerated bilin-
ear filtering for sampling re-projected data.

3.2. Training pass

Expectation-Maximization (EM) algorithm iteratively trains para-
metric models to estimate distribution

Dy (@) & Li(x, 00;) fr (x, @, @ ) cos(8;) 3)

for every pixel p,,, based on incoming radiance L;(x,,;,®;) from
Yw,i and current fixed @, . For running E-Step it is supposed to fetch
material parameters from G-Buffer and estimate posterior probabil-
ity p of sampling @; from BRDF and from N([x, ], tiy,, Xy, ) dis-
tribution where [x,y] = M~ (®;). In M-step algorithm calculates a
new estimation of moments and other parameters employing tem-
poral exponential smoothing with a smoothing factor:

Oty = 0.75 @

Also, we suggest using N,,,, VPLs (see Eq. 5) from neighboring
pixels inside a 5x5 pixels window for accelerating convergence,
because it does not lead to any bias, where N,,; is a number of
sampled VPLs for a pixel p,,,. For training distribution we only
use samples generated by the BRDF strategy, because relying on all
samples leads to 7, ;, ~ 1.0 and biased results in our experiments.
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Figure 3: These comparisons demonstrate the effectiveness of our path-guiding algorithm for different scenes with zoomed render patches
relying on 1 spp with trained mixtures. It decreases the variance of LTE (1) estimator for specular materials with normal maps (Bistro
and Glossy Sponza), scenes with low-frequency environmental lighting (San Miguel), diffuse materials with high-frequency local indirect
shadows, and complex sampling directional lighting (Sponza). Also, we show ALIP [ANAM*20] metric error for numerical comparison.

4. Results and Discussion

We evaluate our new path-guiding algorithm on a set of different
scenes: Sponza, Bistro Exterior, SanMiguel, Glossy Sponza based
on the Falcor rendering framework [NBW20].

4.1. Comparison with Path-Tracing

We compare our solution only to default path-tracing because all
other Path-Guiding techniques do not support real-time GPU-based
rendering and require additional precomputations. As can be seen
in Figure 3 our algorithm drastically decreases the level of noise for
all testing scenes. It allows us to distinguish indirect local shadows,
high-frequency specular reflections which are caused by employing
normal maps, only by relying on 1 spp. Also, we want to notice that
our technique decreases the variance of the MC estimator for low-
frequency environmental lighting in the San Miguel scene, too.

Real-time rendering developers usually apply SVGF denoiser
[SKW™17] for achieving stable rendering results. We suggest em-
ploying the path-guiding technique, because, as can be seen in Fig-
ure 4, it drastically improves the robustness of the SVGF algorithm.
Also, our technique decreases the level of flickering and recover
lost indirect shadows and lighting. For a demonstration of this com-
bination of techniques please watch the videos from supplementary
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materials. But we rendered several frames of the static scene with
disabled jittering of pixel centers using PT+SVGF and PG+SVGE,
constructed plots with estimated temporal error for proving our
statements about flickering level, see Figure 4.

4.2. Performance

Because we rely on the screen space technique the performance is
fully dependent on the resolution of frame buffers. For improving it
our algorithm preloads VPLs in shared memory buffers in the sec-
ond training pass, which allows us to sample VPLs of neighboring
pixels with better efficiency. The value of N,,;, influences the final
performance and it introduces the trade-off between the speed of
convergence of training and load on computing resources, for this
reason, we propose to estimate it adaptively:

Ny = (1.0 — min(ky,, /kMax,1.0)) x 1545 Q)

, where kMax = 10 is the maximum number of training epochs.
The final results of our performance measurements are about 1.5-
1.75 ms per frame on RTX 2070 at 1080p resolution as additional
overhead compares to the default path-tracing technique. But at the
same time, path-guiding promotes the generation of more coherent
rays, so it leads to an overall performance gain of about 5% com-
pared to default path-tracing on average in our experiments.
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Figure 4: As can be seen in this comparison for the Sponza
scene, applying real-time SVGF can achieve robust results by us-
ing our path-guiding technique. Relying only on the denoiser with
default path-tracing signal leads to temporal-flickering, fireflies,
over-darkening the final renders, and loss of high-frequency indi-
rect lighting or shadows. Also, we attach the plot for visualizing the
level of flickering, which is captured by rendering several frames of
the static scene.

5. Limitations

One of the main problems of this algorithm is slow training of the
mixture model parameters in cases of incorrect reprojection be-
tween pixels which has very different incident lighting distribution.
We discovered that it is not sufficient to cut pixels for re-projection
only by normal and depth differences, so the optimal strategy is an
open question for future research.

Also, using the screen space technique allows us to guide the
sampling process only for first surface interactions. Moreover, it
leads to unstable results for new visible surfaces, but we want to
notice that convergence in such cases is very rapid.

Because of supporting guiding in the hemispherical domain, we
rely only on the BRDF distribution sampling for transparent mate-
rials and also for materials with roughness near zero.

In contrast to the work of [VKv*14], we only train one Gaussian
lobe per pixel and it may lead to worse results. This decision is
motivated by the ease of the implementation and limitations of real-
time path-tracers in terms of memory bandwidth (every additional
lobe requires storing 6 parameters) and computational loads. Also,
because parameters of a Gaussian mixture model make a set, which
is order-independent, there would be a filtering problem.

6. Conclusion

In this paper, we have presented the novel real-time technique for
path-guiding which decreases the overall noise level of rendering
with a limited samples budget for different types of scenes and light
conditions, and slightly improves the overall performance. Also, we
discovered that our algorithm has additional benefits of combining
it with SVGF, which leads to decreasing the bias of the final render
and improving its temporal stability. We believe that our work will
inspire the research community to explore new ways of applying
path-guiding techniques for real-time ray tracing.
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