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Abstract

Human body 3D reconstruction has a wide range of applications including 3D-printing, art, games, and even technical sport
analysis. This is a challenging problem due to 2D ambiguity, diversity of human poses, and costs in obtaining multiple views.
We propose a novel optimisation scheme that bypasses the prior bias bottleneck and the 2D-pose annotation bottleneck that we
identify in single-view reconstruction, and move towards low-resource photo-realistic 3D reconstruction that directly and fully
utilises the target image. Our scheme combines domain-specific method SMPLify-X and domain-agnostic inverse rendering
method redner, with two simple yet powerful techniques. We demonstrate that our techniques can 1) improve the accuracy of the
reconstructed body both qualitatively and quantitatively for challenging inputs, and 2) control optimisation to a selected part
only. Our ideas promise extension to more difficult problems and domains even beyond human body reconstruction.
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1. Introduction

Human body 3D reconstruction has applications in 3D-printing,
virtual/augmented reality, games, film, sport analysis, and more.
This is a challenging problem due to 2D ambiguity and the diver-
sity of human body poses [KBIM18,PCG*19].

In general, existing approaches to 3D reconstruction are ei-
ther domain-agnostic or -specific. The former includes stereo vi-
sion [Ali19], which requires multiple images that may be sim-
ply unavailable or expensive. On the other hand, the latter of-
ten requires only a single image but remains challenged by im-
ages with rare/extreme poses. This is because they (especially
learning approaches [GLK*20, HXL*20, JMT18]) generally rely
on existing datasets of 3D bodies, which naturally have a lim-
ited distribution of poses. Furthermore, the non-learning techniques
[PCG*19, AMX*18] effectively ignore the source image once a
2D-pose annotation is obtained, making them vulnerable to faulty
estimations and blind to other features.

Unlike existing works, we propose to use a single source image
directly as the target in human body reconstruction and optimise us-
ing an emerging domain-agnostic approach that is free of learnt bi-
ases, called inverse rendering [LADL18], combined with a domain-
specific technique, SMPLify-X [PCG*19]. We propose our novel
optimisation scheme accompanied by our two simple yet powerful
techniques: upstream parameter optimisation and selective inverse
rendering. We demonstrate our techniques by case studies on chal-
lenging in-the-wild images from judo, in which out-of-distribution
poses due to extreme dynamism of the sport are common and
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motivate the need for an alternative to the existing methods. We
achieve quantitative/qualitative improvements in the accuracy of re-
constructed body poses over SMPLify-X baseline and over a con-
current work that uses stronger (kinematic) constraints [SBC21].
We also demonstrate how to optimise only a selected part without
affecting the rest. In summary, our contributions are as follows:

1. A novel optimisation scheme for 3D human body reconstruction
that uses the source image directly as a target. Bypasses reliance
on prior biases or 2D annotations and opens a way towards util-
ising the source image fully, improving reconstruction accuracy.

2. Selective inverse rendering: a novel ‘“select-by-looking” ap-
proach to limit the optimisation to an intended part of the body.

3. Upstream parameter optimisation: a novel approach to optimise
an arbitrary upstream parameter of a 3D scene parameter.

2. Related works

Our work combines the expressive body shape and pose modelling
technique, SMPLify-X [PCG*19], with the differentiable render-
ing solution: redner [LADL18]. SMPLIify-X captures expressive
pose features including hand and face pose by optimising a pa-
rameterised body model against estimated 2D joints, but is blind
to other features, e.g., clothing, hair, and colour. SMPLify-X (like
[AMX*18,KBJM18]) relies on 2D pose annotation as optimisation
target, making quality of pose estimation the bottleneck to recon-
struction quality. Furthermore, their optimisation is constrained by
a learnt body pose prior, which limits generalisation to rare out-of-
distribution poses.
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Alternatively, learning (e.g., [GLK*20, HXL*20]) approaches
are recently common, but they are generally limited for rare poses
due to reliance on training data. High-quality training dataset is ob-
tained through 3D scans in [JMT18], but it is expensive and limited
to restricted poses. Work by [SBC21] enforces human kinematic
constraints and enriches training with synthetic data like [XZT19].
However, real and out-of-distribution data remain challenging.

An emerging approach to supervise reconstruction without prior
biases while using the full information of the source image is in-
verse rendering, which refers to inferring 3D scene parameters like
geometry, material, and camera from a target 2D image [LHJ19].
Gradient-based solutions [LADLI18, LHJ19] do this with differen-
tiable rendering by re-projecting 3D scenes to 2D images and back-
propagating error (from comparison with the target) to scene pa-
rameters. Recently, [LHJ19] showed impressive results optimising
approximate 3D models to photo-realistic reconstructions. Unfor-
tunately, the reliance on initial approximation is a limitation.

2.1. Similar works

The work by [LLCL19] briefly demonstrates human body fitting
with novel differentiable renderer, but within a limited setting with-
out details of the underlying theory/method. The main limitation
is that their generic learning-based reconstruction relies on train-
ing data, which may be unavailable. ARCH [HXL"20] uses differ-
entiable rendering to recover surface details of a volumetric body
model but not the pose. Our work differs by proposing to use off-
the-shelf solutions for a challenging domain with extreme body
poses and describing the theory/method behind how to apply them
in detail. Other works have also explored inverse rendering but only
for faces [DBA*21] or hands [KKOT21]. Uniquely, we do so for
the whole human body and optimise upstream parameters. Further-
more, we are the first to showcase selective inverse rendering.

3. Method
Related methods suffer from the following major problems (see 2):

1. Rare out-of-distribution poses
2. Bottleneck due to reliance on 2D-pose annotation
3. Blindness to other features (e.g., clothing, and colour)

We solve these problems simultaneously by combining domain-
specific human body modelling [PCG™*19] with domain-agnostic
inverse rendering [LADLI18] into a novel optimisation scheme.
This is possible because inverse rendering (redner) supervises re-
construction with the source image directly, as aforementioned in
2. In 3.1, we present the method behind the optimisation scheme.
Then, we present the idea of selective inverse rendering in 3.2.

3.1. Upstream parameter optimisation

With differentiable rendering, we can infer 3D scene parameters ®
(e.g. geometry and camera pose) from a target 2D image Irarger, by
rendering a synthetic image I, from which we subsequently calcu-
late a scalar loss L (Equation 1) and back-propagate gradients.

L(ItargeuI) = HImrgez - I”% (1)
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We use the differentiable rendering solution redner [LADLI18]
to create a synthetic image I (Equation 2).

I= redner(@); P = (i)geomerry,q)cameraq ) (2)

Our key insight for 3.1 is that we can optimise parameters be-
yond just the scene parameters @ if these themselves are parame-
terised by and differentiable with respect to upstream parameters.
Generally, this is because chain-rule allows calculating the partial
derivative of I with respect to an upstream parameter «;, for a
scene parameter ®; (a1, a2, ...on ) parameterised by upstream pa-
rameters oy, o, ...

In case of rendering the human body reconstruction of SMPLify-
X, since the scene geometry ®geomerry is the reconstructed human
body M parameterised by upstream parameters 0, 3,1 [PCG*19]
for pose, shape, and facial expression respectively (Equation 3), it
is possible to compute the partial derivative of L with respect to
e.g., body pose 6, using the chain rule in Equation 4.

‘I’geometry = M(,@, 97'111) (3)

oL _oL a1 am “
36, _ oI oM 96,

In practice, since both SMPLIify-X and redner are differentiable
with respect to their parameters and implemented in PyTorch, com-
puting the derivative in Equation 4 is handled by automatic dif-
ferentation. This gives us the advantage that our novel optimisation
process can be implemented simply: we pipeline SMPLify-X and
redner together and instruct PyTorch to backpropagate gradients to
the body pose ).

We formulate inferring the body pose 6, as constrained optimi-
sation problem and seek to minimize the objective function:

min L(Ifarggt,_[) +7‘E(0h) (5)
Gbﬁa

where E(0},) is a simple squared L, norm prior of the body pose
6, and A is the weight of the regularisation term. Note that we
also optimise an additional upstream parameter for camera angle
o, which we define to change the camera pose ®camera Scene pa-
rameter without changing the camera distance.

We simultaneously optimise the body pose 8, and the camera
angle o using stochastic gradient descent (SGD) for 200 itera-
tions starting from an approximate camera pose with regularisation
weight A = 3 unless otherwise stated. We use two SGD optimisers
for 8;, and o with momentum 0.9 and learning rates 1 x 10~* and
1x1078 respectively.

3.2. Selective inverse rendering

With selective inverse rendering, we refer to inverse rendering with
the purpose of optimising only a certain part of the body. Doing so
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is motivated by the observation that it is often useful to optimise one
part in isolation from the other parts, e.g., when we do not want the
optimisation to affect a part of the body that is already in the right
position. To our knowledge, we are the first to address such cases.

Practically, our question is: how do you “select” the vertices and
triangles constituting the intended part of a given 3D model? Our
attempt to the answer is intuitive and simple. It is to simply set
the scene parameter for camera pose ®camera such that only the
selected part is visible in the rendering. In other words, our answer
is to quite literally “look”.

In theory, this selecting-by-looking is possible because the com-
putation of a pixel of the rendered image I (x,y) is traceable (by the
definition of ray tracing) to only those triangles of the mesh that
are visible (directly or through refraction/reflection) to the render-
ing camera. This means that the triangles that are not visible to the
camera and therefore do not contribute to I will receive no error
backpropagated to them. This is useful because we can “select” pa-
rameters (including upstream parameters) that are responsible for
some selected parts of the rendering (e.g., the hands or the face) by
“pointing” the camera at those parts without worrying about ver-
tices and triangles, or the model architecture.

4. Case study
4.1. Challenging domain - Judo

We apply our techniques to judo images, which have close-contact
people with extreme (e.g., twisted, or upside-down) poses. We may
want to 3D reconstruct judo scenes for artistic purposes or technical
analysis. The rarity of the poses makes learning approaches and the
2D-pose estimation (which SMPLIify-X relies on) unreliable and
motivates the need for a novel method. Unfortunately, the rarity
also means absence of annotations and limited evaluation [SBC21].

4.2. Pose optimisation results and evaluation

Figure 1 shows results obtained by our novel optimisation method.
We clamp image pixels between zero and one before calculating the
loss in Equation 1. Figure 1 second row uses looser regularisation
with weight A = 2 (see Equation 5) to allow optimisation to con-
sider more “extreme” poses the target requires. The results achieve
clear qualitative improvements including more hunched pose for
Figure 1 first row, twisted legs with raised arms for the second,
and forward lean with raised right leg for the third, all of which
are more accurate and crucial to identifying the judo moves for
technical analysis. We quantitatively compare our method to the
SMPLIify-X baseline and to a concurrent work that utilises human
kinematic constraints [SBC21] on the judo images. Table 1 shows
standard L, normal re-projection errors (like [HXL*20,PCG*19] at
dense pixel-level) regularised by the image dimensions. We achieve
up to 45.5% error reduction from SMPLIify-X baseline and up to
22.3% error reduction from the concurrent work [SBC21].

4.3. Selective inverse rendering

To first demonstrate our novel selective inverse rendering method,
we optimise without constraints (A = 0) the scene parameter ge-
ometry ®geomerry directly (rather than its upstream parameter like
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(b) Iter. 1 (¢) Error (d) Iter: 200 (e) Error

(a) Target

Figure 1: Each column shows a) the raw target b) rendering of
Sfaulty SMPLIfy-X reconstruction before optimisation at 1st itera-
tion c) error at the 1st iteration d) rendering at 200th iteration and
e) error after the entire optimisation at the 200th iteration.

Target image Ours SMPLify-X  [SBC21]
Figure 1a top 15.7 28.8 20.2
Figure 1a mid 18.1 24.7 20.1
Figure la bottom  19.4 29.6 20.4
Figure 3a 19.6 249 23.9

Table 1: L, normal error as percentage of the product of image
dimensions (height, width, and number of channels).

body pose 8),) in two conditions: full and selective. In the full con-
dition, we render the entire body whereas in the selective, we ren-
der the lower body only. The target images are the corresponding
parts. Figure 2 shows the results that the selective condition has ef-
fectively controlled optimisation to only the lower body, which has
prevented the unwanted changes we see in Figure 2d upper row.

Although the rendering in the top row Figure 2c is incredibly
photo-realistic to the target image, the reconstructed 3D mesh ap-
pears unintelligible when rendered differently, especially the upper
body (Figure 2d top). The bottom row has selectively optimised the
lower body to generate much more intelligible result by preserving
the upper body (contrast Figure 2d top and bottom). This demon-
strates selective inverse rendering is a promising novel approach to
isolate a selected part and regulate the other parts.

We also demonstrate selective inverse rendering for optimising
an upstream parameter, the body pose 8),. Figure 3 shows the results
of selectively optimising the pose of the lower body. The lower
body error is reduced by 21.3% and a more accurate lower body
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(a) Target (b) Before (c) After

(d) 3D mesh

Figure 2: Selective inverse rendering of geometry

pose than non-selective optimisation result is achieved. Figure 3h
achieves lower body pose more accurate to the target image (Figure
3f) than in Figure 3i, with intentionally less changes in the upper
body. Note, the upper body is not fully isolated from the lower body
due to 1) the pose prior regularisation term in our objective function
(Equation 5) and 2) the lack of disentangling in the pose embed-
ding that we adopted from SMPLify-X. To improve the isolation,
we reduced the regularisation term weight to A = 1. More work is
needed to investigate how to better isolate the selected part during
optimisation of parameters with such entangled latent embeddings.

(a) Target (d) Iter. 200 (e) Error

(b) Iter. 1 (¢) Error

(f) Target (g) Before (h) After (i) Ref.

Figure 3: Selective inverse rendering of upstream parameter

5. Conclusion and future work

We have presented a novel optimisation scheme for human body
reconstruction along with two simple yet powerful techniques.
We build upon existing works by combining complementary and
distantly-related reconstruction approaches towards photo-realistic
reconstruction that captures all the features of its source/target im-
age. Our novel optimisation scheme utilises the source image di-
rectly as the target and automatically optimises the 3D body pose
through upstream parameter optimisation. We demonstrated that
the new scheme can improve reconstructions both qualitatively and

quantitatively (by as much as nearly halving the error from base-
line). Moreover, we demonstrated that our intuitive selective in-
verse rendering can successfully control optimisation to a selected
part and intentionally regulate changes in the other parts.

Ultimately, this work pushes towards low-resource and photo-
realistic 3D reconstruction. In the future, we would like to incorpo-
rate kinematic constraints into our approach [GLK*20] and extend
our work to different domains (even beyond human bodies) and dif-
ferent upstream parameters including shape, colour, and material,
as well as investigate how to better isolate optimisation when an
upstream parameter is latent and entangled.
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