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Auto-rigging 3D Bipedal Characters in Arbitrarily Poses
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Figure 1: Auto-rigging a 3D bipedal character in arbitrary pose. Given a 3D character in an arbitrary pose, we find the best embedding of
the bipedal skeleton. Using the estimated skin weight, the input mesh is transformed into the canonical pose, from which we can generate 3D
animation.

Abstract
We present an end-to-end algorithm that can automatically rig a given 3D character such that it is ready for 3D animation. The
animation of a virtual character requires the skeletal motion defined with bones and joints, and the corresponding deformation
of the mesh represented with skin weights. While the conventional animation pipeline requires the initial 3D character to be
in the predefined default pose, our pipeline can rig a 3D character in arbitrary pose. We handle the increased ambiguity by
fixing the skeletal topology and solving for the full deformation space. After the skeletal positions and orientations are fully
discovered, we can deform the provided 3D character into the default pose, from which we can animate the character with the
help of recent motion-retargeting techniques. Our results show that we can successfully animate initially deformed characters,
which was not possible with previous works.

CCS Concepts
• Computing methodologies → Motion processing; 3D imaging; Neural networks;

1. Introduction

3D characters used in animations or games are deformed from
a canonical pose. The deformation is often defined with a skeleton,
which mimics bones and skins of the human body. The movement
of the surface mesh of 3D characters is given as a linear combina-
tion of transformation parameters of neighboring bones, which fol-
low rigid transform. A typical pipeline starts from a 3D character in
a bind pose, namely T-pose or A-pose, where the underlying bones
and skin weights are manually defined. This technique is success-
ful when the character in the desired pose is available, for example,
when they are generated by artists or scanned from a controllable
object, for example, a real human body.

Code available at https://github.com/whitealex95/autorigging-bipedal

However, not all 3D models are available in the bind poses. With
the recent advance in 3D modeling and capturing techniques, one
can scan and acquire a 3D model of one’s favorite figure, for ex-
ample, a statue bought from a character fair, or one’s favorite key
chain. To revive the characters in the virtual world, the rigging
needs to be extended for the input shape in arbitrary pose.

We propose a method to animate a 3D character in an arbitrary
pose. As the input character is not in a canonical pose, we need
to solve for the joint locations with the pose parameters. Since the
problem is highly under-constrained, we fix the skeleton as one of
a bipedal character that resembles human body.

By constraining the skeletal structure, it might appear to be sim-
ilar to a human-pose estimation problem, which has a large volume
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Figure 2: The overview of our auto-rigging process. We first convert the input mesh into a 3D voxel representation to regress the 3D positions
of joints (JointNet). From the joint locations, we find the full orientation of joints (RotNet) and also assign weights corresponding to individual
bones (SkinNet). By combining the information, we can animate the input character to the bind pose.

of literature. Our problem is different from the human-pose estima-
tion in three aspects. First, the relative sizes between different body
parts distribute in wide ranges than those of the human body, and
the approach for 3D characters require separate training. Second,
we need to find the rotations of individual joints, whereas the hu-
man pose estimation often only regresses for the joint positions as
heat maps and solves for inverse kinematics when necessary. Third,
the 3D animation of the character requires deformation of individ-
ual mesh vertices with skin weights deduced from the full skeletal
transformation [XZK∗20].

Our algorithm aims to create lively animation of a character of
your choice in arbitrary pose. After we detect the joint locations
and solve for initial transformation, we can create a nice anima-
tion of unique virtual characters using existing motion re-targeting
methods.

2. Method

Given a triangular mesh of a 3D character in a random initial
pose, our goal is to find the character in the canonical pose (T-pose
or A-pose), and rig a humanoid skeleton to apply bipedal anima-
tion. We adapt one of the most widely used skeletal animation for-
mulation, based on linear blend skinning (LBS):
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Jt
j is the usual transform matrix for animation frame at time t, and

B j , which we call as the bind-pose matrix, whose inverse undoes
the input pose of the given character to generate the default bind
pose.

Finding the initial pose of the unknown skeleton and unknown
3D shape result in an abundant degrees of freedom (DoF), and we
fix the skeleton topology to hand the ambiguity of the problem.
We adapt Bio-Vision Hierarchy (BVH) [MM01] to hierarchically
represent the movement of the character’s body as used in a motion
capture system. The positions of bones in the skeleton are encoded
as a sequence of relative transformations of the child bone with
respect to its parent. The motion is encoded using the joint positions

at the bind pose pb
j and the relative joint orientations R̄ j, which is

set to identity at the default pose. Specifically, the transformation
of individual bones under BVH can be written as
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, p̄ j = Rparent( j) p̄b
j , (2)

where R j = I3×3 and p j = pb
j at the bind pose.

In our set-up, the initial pose is not the bind pose of the an-
imation. Rather, we can consider the initial mesh as the output
of an animated mesh under motion. With this representation, our
goal is finding the bind pose B−1

j and the skin weights wi j from
which we can animate our character with motion re-targeting algo-
rithms [VYCL18, ALL∗20]. The pipeline is outlined in Figure 2.
We first find the joint position p j (Sec. 2.1) followed by the joint
orientation R j (Sec. 2.2). Then the skinning weights for individual
vertices are obtained (Sec. 2.3) to reconfigure the given character
into the bind pose following Eq.( 2). Each module is trained sepa-
rately and combined to form a full pipeline.

2.1. Joint Position Estimation

The JointNet in Figure 2 extracts the probabilistic distribution
of individual joint positions of an input 3D character. The heat-
map based representation is widely used for human-pose estima-
tion [TJLB14, NYD16, MYCML18] in computer vision. While the
human-pose estimation in computer vision regresses for the 2D co-
ordinates of joints on pixel space, our JointNet finds the 3D posi-
tions in 3D voxel. The input to the network is voxelized signed dis-
tance field of the given model and the output is 3D heat maps. Using
the stacked hourglass architecture [NYD16] with 3D convolutions
and skip connections, our network outputs the likelihood heat map
for each joint. The network is trained using the cross-entropy loss
compared against the Gaussian distribution centered at the ground-
truth joint positions. The final joint positions are regressed to the
maximum likelihood estimate from the heat map within the 3D
voxel grid as in [XZKS19].

2.2. Joint Orientation Estimation

Given the skeletal topology of BVH, we estimate the bone
lengths from the detected joints and define the bind pose of the
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Figure 3: If the template mesh in the bind pose (left) is not provided
as in our setting, we need to use the correct bone transformation to
deform the input posed mesh into the bind pose. Without correct
orientation, candy wrapper effects can deteriorate the quality of
the recovered template mesh in the bind pose (right).

skeleton. However we cannot formulate the inverse kinematics (IK)
which minimizes either the discrepancy obtained from projected
template mesh [KBJM18] or mapping between animated rigs and
the underlying skeleton [HSK15]. The main difference is that we
do not have the template mesh at the bind pose to define the loss
functions. Even if we attempt to solve to fit the skeletal joint po-
sitions without template, simple iterative IK solver results in awk-
ward rotation as presented in Figure 3 (right). Instead, we adapted
a learning-based module that learns the joint rotation in the form of
BVH. Our module, denoted as RotNet in Figure 2, is composed of
fully connected layers with batch norm. Given the joint positions
relative to the root, our network regresses the joint rotation matrix
in a 6D representation [ZBJ∗19] using geodesic distance of rota-
tion matrices as a loss function: Lr = ∑i ‖ log(RT

i R̂i)‖F , where Ri
is the rotation matrix computed from the output 6D representation.
With the predicted joint position and orientations, the joint position
at the bind pose can be directly calculated using Eq. (2).

2.3. Skinning Weight Estimation

After we find the initial skeleton with their transformations
B−1

j , we need the skin weights wi j to deform the input mesh
into the bind pose (SkinNet in Figure 2). After computing vol-
umetric geodesic distance from joints to vertices, we run graph
convolution to find the skinning weights of individual vertices
as in [LZT∗19, XZK∗20]. Treating the skin weights as a distri-
bution over joints, we use soft cross entropy as a loss function
Ls =−∑i, j wi j log(softmax(ŵi j)), measuring the distance between
ground truth and predicted skin weights. For the final output, we
filter up to 3 most relevant bones over the threshold of 0.2 and nor-
malize them such that the skin weights for each vertex sum up to
1.

3. Experiments

We collect 64 characters in bind pose from the mixamo dataset
[Ado20] where trainining, validation, and test splits contain 55-3-
6 characters respectively. We first simplify the mesh to have less
than 8K vertices, resulting in 2K to 8K vertices per mesh. We rig
them to have the same skeletal structure with 22 joints and generate
7 motion sequences (585 frames) for each character. To create the
SDF for JointNet, we voxelize the mesh and compute SDF based
on morphological transform.

Figure 4: Result of joint skeleton extraction. Other methods fail to
create right topology or miss out important joints.

Table 1: Comparison with other skeleton prediction methods

MPJPE S-EMD IoU Prec. Rec.
Pinocchio 0.0913 0.146 50.9% 60.4% 50.9%

RigNet 0.0889 0.117 60.1% 64.9% 69.5%
Ours 0.0766 0.0592 67.0% 70.5% 69.4%

3.1. Skeleton Estimation

We compare our method with RigNet [XZK∗20] and Pinoc-
chio [BP07]. For fair comparison, RigNet’s parameter is tuned to
have the same average number of output joints. As can be seen in
Figure 4, methods without a template create inconsistent skeletal
structure and often fails to form plausible skeleton. However, our
method does not suffer from inconsistent hierarchy and correctly
finds the symmetric structure by enforcing the same skeletal topol-
ogy.

The accuracy is quantitatively measured in Table 1. As discov-
ered from the qualitative results, our result achieves the best accu-
racy for the joint position estimation. MPJPE (Mean Per Joint Posi-
tion Error) is adapted from conventional pose estimation to measure
the accuracy of the joint position, and computed by averaging the
distance of each matching joints.

With the help of the skeletal topology, the structural recovery
is more prominent using our method. The skeletal structure is pro-
vided as the collection of line segments of bones, and it is not trivial
to compare the line segments as it is. Instead, we sample 300 points

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

59



J. Kim, H. Son, J. Bae & Y. M. Kim / Auto-rigging 3D Bipedal Characters in Arbitrarily Poses

Figure 5: Complete result of our pipeline. With the predicted joint and skin information, our method can animate the model back to the bind
pose. Deformation error shows per vertex distance from the original bind pose mesh.

such that each bone has about the same number of points, and S-
EMD (Skeletal EM Distance) measures the Earth Mover Distance
between the point distributions of the proposed skeleton and the
ground truth. The metric measures the structural similarity such as
symmetry, and our method shows superior result.

Additionally we measure IoU, precision, and recall of the set
of joints as in [XZK∗20] and other pose estimation problems. For
matching distance, we compute the tolerance being the local shape
diameter evaluated at corresponding joints. Our approach achieves
the best IoU and precision. However, we sometimes suffer from
symmetric ambiguity in extreme poses which results in perfor-
mance degradation for recall.

3.2. Bind Pose Mesh

Since we are one of the first to find the bind pose mesh from
arbitrary pose, there is no method to compare against. Instead, the
bind pose template is compared against the ground truth in Figure 5.
With the help of the rotational compensation, our approach greatly
reduces possible artifacts and finds the reasonable bind-pose mesh
to apply animation. The animated sequences are available in the
accompanying video.

4. Conclusion

We propose an algorithm that successfully rigs a 3D character in
arbitrary pose. Our method fixes the skeletal structure and regresses
for joint rotation. From the full transformation information, we can
rig the input mesh and deform it into the canonical pose. With the
rigged bind-pose character in hand, we can combine our result with
motion re-targeting to animate a wide variety of characters obtained
online or through scanning. Future works include rigging arbitrary
posed characters that can adapt changes in the skeletal structure.

References

[Ado20] ADOBE: Adobe’s mixamo, 2020. URL: http://www.
mixamo.com. 3

[ALL∗20] ABERMAN K., LI P., LISCHINSKI D., SORKINE-HORNUNG
O., COHEN-OR D., CHEN B.: Skeleton-aware networks for deep mo-
tion retargeting. arXiv preprint arXiv:2005.05732 (2020). 2
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