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Figure 1: Example KPCNs features used for denoising Monte
Carlo renderings. Referenced in the main publication.

PSNR SSIM Training Inference
full 38.60 0.948 3d 1h 74.8s

half bandwidths 38.14 0.939 2d 10h 43.2s
5
7 depth 38.19 0.940 2d 13h 50.6s

single scale 37.64 0.931 1d 21h 33.9s

Table 1: PSNR/SSIM results and training/inference times of vari-
ous size-reduced KPCN generalizers.

1. Ablation Studies

In this supplemental material we present various ablations of our
denoising method.

1.1. Inference Time vs. Denoising Quality

We investigated how various modifications to the KPCN general-
izer with the goal of reducing inference and training times affect the
denoising quality through an ablation study on the SIDD dataset.
Table 1 shows a comparison between the full Robust KPCN that
we described in Section 4 and several other configurations where
we halve the bandwidths of each layer of the KPCN generalizer,
reduce the depth of the KPCN generalizer. Note that all configura-
tions still use 5 specialized U-Net denoisers, which are factored into
the reported time measurements. The results show each of these ap-
proaches could be viable ways to reduce the inference and training
times with modest sacrifices in denoising quality.

In applications when the noise magnitude of test images are
known to be relatively low, another strategy could be to reduce the
capacity of specialized denoisers.

To this end we produced 9200 training pairs of clean and noisy

Noise level σ = 5 σ = 10 σ = 15 σ = 20 σ = 25
full 40.18 39.23 38.94 38.59 38.37

1
3 DnCNN-S 39.93 38.90 38.56 38.02 37.85

Table 2: PSNR results of Robust KPCN with denoised-image fea-
tures produced by a full DnCNN-S vs. a computationally more effi-
cient size-reduced DnCNN-S.

images, where the clean images were obtained from the publicly
available dataset [ZSS∗18], and the noisy images were produced
by adding Gaussian Noise at a magnitudes σ = {15,25,35} to the
corresponding clean images. We also trained a KPCN generalizer
(as discussed in Section 3) by utilizing the 3 specialized DnCNN
denoisers (denoted as DnCNN-S) trained for σ = {15,25,35} to
produce denoised-image features. Our testing dataset was similarly
generated using 264 different images from the same dataset, to
which we added Gaussian noise at magnitudes sampled from the
range σ ∈ [5,25]. Table 2 shows a comparison on the aforemen-
tioned dataset, between the full Robust KPCN we described also in
Section 3, and another variation where we reduce the capacity of
the specialized DnCNN denoisers to a third of the originals. The
capacity reduction results in minor reduction in denoising quality,
and as such could be employed as another viable strategy while
optimizing overall efficiency.

1.2. Denoised-image Feature Selection

The quality and quantity of denoised-image features can have a sig-
nificant impact on Robust KPCN’s denoising quality. In Table 3
we compare a baseline KPCN that utilizes 3 DnCNN-S denois-
ers (trained for noise magnitudes σ = {10,15,20}) with various
other denoised-image feature configurations on the dataset from
Section 1.1. Note that in this experiment we train each of these
Robust KPCN configurations from scratch. The first configuration
which does not use any denoised-image features results in a notable
reduction in denoising quality with respect to the baseline config-
uration beyond relatively low noise magnitudes. The next config-
uration shows the results of using the outcome of BM3D as the
sole denoised-image feature in our Robust KPCN framework. In
our experiments we observed that the denoising quality of Robust
KPCN depends highly on the quality of individual denoised-image
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Noise level σ = 5 σ = 10 σ = 15 σ = 20 σ = 25
no feats 39.07 38.31 38.04 36.62 35.93

BM3D feat 38.93 37.94 37.71 36.22 35.11
3 DnCNN-S feats 40.18 39.23 38.94 38.59 38.37
5 DnCNN-S feats 40.46 39.48 38.92 38.60 38.41

Table 3: PSNR results of Robust KPCN with various features on
different Gaussian noise levels.

features. In fact in this experiment using BM3D denoised images
as a features results in worse results than using no denoised-image
features at all. This outcome suggests against the potential strategy
of using additional low-quality but computationally cheap features
for improving overall denoising quality.

We also investigate another Robust KPCN configuration where
we use 5 specialized denoisers (trained for noise magnitudes σ =
{5,10,15,20,25}) as opposed to 3 specialized denoisers of the base
configuration. This modification results only in minor improve-
ments in denoising quality, which suggests that increasing the num-
ber of features beyond a certain point results in diminishing returns.

1.3. Loss Function Selection

We tested various loss functions by using them to optimize our
KPCN generalizer by training on the SIDD medium dataset, and
evaluated their individual performances on the corresponding val-
idation set. Figure 2 shows convergence plots of KPCN generaliz-
ers optimized with MAPE, L1, MRSE, and SSIM, e.g. (a) shows
MAPE, L1, MRSE, and SSIM errors on the validation set while
training the KPCN generalizer with MAPE. Overall training with
MAPE results in the lowest loss across all error metrics we tested
for, and shows relatively little fluctuations during training. Hence
throughout this paper we used MAPE to optimize all our KPCN
generalizers.

We also note that, despite corresponding better to subjective sim-
ilarity, SSIM is often difficult to optimize for. Hence using SSIM
as the KPCN generalizer loss function results in overfitting. A pos-
sible venue for future exploration could be to pre-train a KPCN
generalizer using MAPE, and later to switch to SSIM loss for fine
tuning.
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Figure 2: Convergence plots of KPCN generalizers optimized with
MAPE, L1, MRSE, and SSIM (shown in that order left to right.)
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