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Figure 1: The nine Scagnostics measures and their exemplar scatterplots in 2D (top row), 3D (middle row), and nD (bottom row).

Abstract
Scagnostics is a set of features that characterizes the data distribution in a scatterplot. These visual features have been used in
various applications to detect unusual correlations of bivariate data. However, there is no formally published implementation
for 3D or higher. This project aims to provide the Scagnostics implementation in JavaScript, called ScagnosticsJS, and also
extend these measures for higher dimensional scattered points. We also present a Scagnostics exploration webpage, which
makes the underlying algorithms transparent to users.

1. Introduction

In 2005, Wilkinson [WAG05] proposed a set of the graph-theoretic
summaries of scattered point data, called Scagnostics. Since then,
Scagnostics has been used in different applications domains with
various purposes, such as high-dimensional time series analy-
sis [PNL*19], clustering of scatter plots [DW14a], and outlier de-
tection [Wil18; PD19]. Two dimensional (2D) Scagnostics were
mainly implemented using either R, Python, or Java programming
languages, and there is no formally published library for Scagnos-
tics implementation in JavaScript which is gaining popularity for
visualization for the web [BOH11].

Our JavaScript library enables the flexibility of executing
Scagnostics calculations either at the client sides (to reduce the
server load) or server-side (e.g., using node.js) comparing to the
dependence on server side calculation by wrapping existing imple-
mentations in a web service. This work also offers 3 dimensions
(3D) and higher dimensions (nD) extensions to Scagnostics. Es-
pecially Scagnostics features of nD data might be more valuable

as such data is not directly accessible by visualization, for exam-
ple, using such features to guide the detection of outliers [Wil18;
PNL*19], the selection of clustering [AKMS07], or dimension re-
duction techniques in deep space [Dan19]. We also provide some
hints on their run-time evaluation within the web environment. Also
we augment this library with a Scagnostics explorer application,
which makes the Scagnostics black box transparent to users.

2. Related Work

This section briefly summarizes the nine Scagnostics mea-
sures [WAG05] and current implementations. Five (outlying,
skewed, sparse, clumpy, and striated) out of nine Scagnostics mea-
sures can be computed based on the distribution of the edge lengths
of minimum spanning tree (MST) built on the underlying scatter
points. Besides the MST, the shape measures also depend on the al-
pha hull (A), and the convex hull (H) of the scattered points. Convex
score is measured by the ratio of the area of the alpha hull and the
area of the convex hull. Skinny score measures the ratio of perime-
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ter to the area of the alpha hull. Also, Stringy shape is similar to
skinny shape, but it does not have branches. Finally, Monotonic
score is calculated via the partial correlation of the two variables.

In terms of implementations, there are several Scagnostics im-
plementations in programming languages such as R [Lee18],
Python [Jos15] (it is Python binding to R Scagnostics), and
Java [DW14a]. Most of these implementations are for 2D Scagnos-
tics, and there is only one attempt to implement Scagnostics in
application to 3D data [Fu09]. However, this implementation has
some flaws and points to improve that we will explain in our imple-
mentation section. To the best of our knowledge, there are no freely
available JavaScript implementation for Scagnostics measures.

3. ScagnosticsJS Implementations

3.1. Binning

Due to the constant increase of data and the limited computing
power, binning helps to reduce the computation expense. There
are two standard ways to bin scatterplots: hexagon vs. leader al-
gorithms. Each algorithm has its pros and cons depending on the
data and the analysis task, so our JavaScript implementation pro-
vides the flexibility to choose either one of them. While the num-
ber of cells in hexagon binning is predefined (e.g., Wilkinson et
al. [WAG05] use 40 by 40 hexagon binning) and increases expo-
nentially to the number of dimensions n as 40n, the number of lead-
ers is always smaller than the number of observations (N). For this
reason, we select leader binning for our nD Scagnostics implemen-
tation.

3.2. 2D implementation

The 2D ScagnosticsJS implementation includes several intermedi-
ate steps described in Figure 2.

1. Data Normalization standardizes value ranges of different di-
mensions into unit range [0,1].

2. Binning helps Scagnostics calculation relatively independent of
the total number of data points and therefore more scalable.

3. Triangulation: MST, concave hull, and convex hull are calcu-
lated based on the Delaunay triangulation on the binned data.

4. MST: Six out of nine Scagnostics measures (except convex,
skinny, and monotonic) are calculated based on the MST.

5. Degree 1, 2 vertices are used to calculate the striated and stringy
measures.

6. Convex hull vs. concave hull: The convex and skinny are mea-
sured based on the perimeters and/or areas of these shapes.

3.3. 3D implementation

As in 2D, building 3D MST is based on Euclidean distances among
data points. The calculations of the convex hull and the concave
(alpha) hull in 3D are similar in 2D except the line is conceptually
converted into the plane, and α radius for the circle used to calcu-
late the alpha hull becomes the radius for the sphere. The outlying,
skewed, and clumpy scores rely on the distribution of the Euclidean
lengths of the MST, and therefore their calculations remained the
same in 3D. Parallel lines, smooth lines (e.g., spiral) and parallel

Figure 2: Intermediate stages in computing 2D Scagnostics: Nor-
malization, Binning, Triangulation, MST (with a red outlier), De-
gree 1 (orange) vs. Degree 2 vertices, and convex vs. concave hull.

planes in 3D are considered as striated patterns. So, the striated
score is revised to count on the angle between adjacent planes (p)
formed by every three consecutive edges (e1, e, and e2) of the MST.
Different from [Fu09], we need to consider |cosθ| > 0.75 instead
of cosθ <−0.75 as the 2D version.

cstriated =
1
|V | ∑

v∈V (≥2)

I(|cosθp(e,e1)p(e,e2)|> 0.75) (1)

where V (≥2) ⊆V are vertices of degree≥2. The cosθp(e,e1)p(e,e2) is
calculated as the dot product of the unit normal vectors of the two
planes p(e,e1) and p(e,e2). These unit normal vectors are, in turn,
computed using the cross products of the vectors made of source
and target nodes of e and e1 for the first plane and e and e2 for the
second plane.

To justify the use of |cosθ|> 0.75 instead of cosθ <−0.75, we
generated samples for two parallel planes, four parallel lines, and
a smooth line to test the striated scores for both cases as shown in
Figure 3. While for the cases of two parallel planes and four parallel
lines, the results are relatively similar, the case of the smooth line
using cosθ <−0.75 threshold leads to striated score of 0 versus 1
when using |cosθ| > 0.75 threshold. As of the striated definition,
its score of zero is not correct for the case of a smooth line.

Figure 3: Comparing striated scores (listed on top of each plot)
using cosθ <−0.75 vs. |cosθ|> 0.75 (our revision) thresholds for
two parallel planes, four parallel lines, and a smooth line.

Convex score and skinny score in 3D version depend on the sur-
face area and volume (instead of perimeter and area) of the convex
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hull (H) and alpha hull (A). They are:

cconvex = volume(A)/volume(H) (2)

cskinny = 1− 6
√

36π
3
√

volume(A)/
√

sur f acearea(A) (3)

where the 6
√

36π is to make sure that cskinny = 0, in case of a sphere.

The area of a 3D hull is the sum of areas of all triangles of that
hull. These triangles are the faces of the hull as the result of the
hull computation. The volume of a 3D hull is computed efficiently
using the algorithms from Robert Nürnberg [Nür13]. Algorithm 1
summarizes the steps that we used to calculate the volume of a 3D
hull from its faces (this works for both convex and concave hulls).

Algorithm 1 Compute the volume of 3D hull from its set of faces

1: procedure COMPUTEVOLUME( f aces)
2: initialization: n = number of faces, volume = 0, i = 0
3: while i < n do:
4: trianglei = f aces[i]
5: vectori = one vertex of trianglei
6: n̂ = normal vector of trianglei
7: volume = volume + dot product of vectori and n̂
8: i = i+1
9: return volume

Finally, the 3D monotonic score is calculated via the
partial correlations of the three variables: cmonotonic =
max[ρ2

X ,Y |Z ,ρ
2
X ,Z|Y ,ρ

2
Y,Z|X ].

3.4. nD implementation

Many application domains require monitoring of multiple variables
for better statistical analysis results, such as multivariate time series
abnormality detection [PNL*19]. Therefore, we provide nD ver-
sion for the Scagnostics scores. Specifically, the scores which are
based on the the MST built from the scattered point data (they are
outlying, skewed, sparse, clumpy, and stringy scores). Besides, we
also provide the monotonic score, which is calculated based on the
maximum partial monotonicity among all pairs of variables. Also,
as a natural extension to the concept of distance in 2D, and 3D
to nD version, we use the Euclidean distance metric for high di-
mensional data, and these calculations remained the same for nD
implementation except for the correction of the sparse score.

Extending the idea discussed in 3D sparse score implementa-
tion, theoretically, the sparse score of nD implementation (using
Euclidean distance metric) could get up to

√
n (n is the number of

dimensions), but this is an extreme case because at most there is
only one edge length with this value. However, the higher the num-
ber of dimensions, the higher the possibility that the MST edges get
longer than 1. For instance, Figure 4 shows two synthesized scatter
plots (6D and 10D) with sparse scores as 1.76 and 2.16 correspond-
ingly if we use the q90 as a sparse measure. Therefore, we propose
the sparse score as:

csparse = q90/

√
b2×n

3
c (4)

where n is the number of dimensions, the floor operation (bc) is

used because MST always selects the lower distances first, the nu-
merator 2 is due to pairwise Euclidean distance between points,
the denominator 3 is the requirement that we would like to have
at least 3 MST edges with lengths greater than or equal to the q90.
Also, this is compatible with the cases n = 2 or n = 3 in 2D or 3D
implementations. This correction factor reduces the sparse scores
for the scatter plots in Figure 4 into 0.88 in both cases.

Figure 4: Synthesized 6D and 10D examples with high sparse
scores: 1.76 and 2.17, if we use the q90 measure. Radar chart, in
this case, is one of many ways to represent multivariate data and
line colors represent different classes.

In this nD version, we do not provide the implementation for the
scores based on the convex/alpha hull (convex and skinny) due to
the limited utility [DW14b] and performance constraints. Even with
approximation approach such as one from [SV16] the complexity
of hull calculation is still O(N2m3/2log m

ε0
), where m is close to

the number of vertices of approximation and ε0 is the maximum
error. The time complexity makes it impractical to incorporate these
scores in the current nD version.

Regarding the striated score, there is no cross product of two
vectors with dimensions higher than three because there are in-
finitely many unit vectors orthogonal to any given two. Also, lines
and planes can be found in higher dimensions, but there is not of-
ten much reason to use them [Wor97]. One alternative to this is
to explore the subspace of every 2 (or 3) dimensions and use the
maximum as the score of nD dataset. We also advise using this ap-
proach with cautions [Wil18] since this might lead to issues in high-
dimensional data analysis. In several cases, the Manhattan distance
metric (L1 norm) might be preferable than the Euclidean distance
metric (L2 norm), or even the Lk norm where k is a fraction should
be explored [AWT09].

4. Evaluations

4.1. Memory and computation time

We computed Scagnostics on six test datasets retrieved from
Bureau of Labor Statistics [Bur18] (the first two), World
Bank [Wor18] (the next three), and Kaggle [Kag18] (the last one).
All executions were performed on a 2.9 GHz Intel Core i5, macOS
Sierra Version 10.12.1, 8 GB of RAM computer. Figure 5 summa-
rizes the dataset information (variables, number of plots, and ob-
servations per plot), gives exemplar scatterplots, and shows aver-
age 2D version Scagnostics computing time for scatterplots in each
dataset. Computing MST is the most expensive while calculating
scagnostics scores is fast. Binning time depends on the distribution
of the underlying data (i.e., a low or high number of bins require re-
binning). Also, theoretical analysis and experimented results show
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that scagnostics algorithms are efficient and scale well in terms of
memory usage (especially with the use of binning).
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Figure 5: Time for major computations of 2D Scagnostics.

4.2. Scagnostics measures and their target patterns

Figure 6 graphically depicts 3D Scagnostics measures and how sen-
sitive they are to the underlying data distribution. The nine mea-
sures are projected into 3D space using the first three principal
components resulted from Principal Component Analysis (PCA)
[WEG87]. It is observable that the corresponding patterns are close
to the unit vectors (red lines) of the measures that they target.
Interested readers can refer to the supplementary document for
the Scagnostics measures on typical patterns that they target.

Figure 6: 3D PCA of Scagnostics measures and scatters.

5. Conclusion and Future Work

In this paper, we provide the JavaScript packages of 2D Scagnos-
tics and further extend it to handle higher dimensional scat-
tered points. We also publish an exploration page, a visual
lens into the intermediate stages of Scagnostics calculation. We
evaluate ScagnosticsJS on various datasets to provide users a
sense of how long it takes to deploy Scagnostics in the web
settings. In the future, we will continue to explore more op-
tions, such as incorporating different distance metrics for the
nD implementation and other approximation methods to con-
vex/alpha hull calculation to complete the remained undefined
scores in nD implementation. The source codes and exploration
page are available at https://idatavisualizationlab.
github.io/ScagnosticsJS/.
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