
Appendix: Learning Body Shape and Pose from
Dense Correspondences

1 Deform-and-learn iterative training strategy
The overview of our deform-and-learn strategy is depicted in Fig. 1. It alternates de-
formable surface registration that fits a 3D model to 2D images and training of deep
neural network that predicts 3D body shape and pose from a single image. As the first
step of an iteration, we train a conditional generative adversarial networks (cGANs)
that predicts 3D joint positions from 2D joint positions (Section 2), which will guide
the registration process. Given image-surface dense correspondences, the registration
step fits a template model to images (Section 3). After registration, we obtain a col-
lection of body parameters θfit which is then used as supervisional signals θanno in
order to train deep ConvNets that predicts body parameters θconv (Section 4). Also, the
joint positions obtained using registration are used for supervising cGANs. The body
parameter estimation results are used as initial solutions of surface registration in the
next round. This training process is iterated for several times to get better results. Note
that in the very beginning the initial pose of registration is in the T-pose, θ0.

2 cGANs with geometric constraints for 3D human pose
We propose to use cGANs to predict depths of joints from 2D keypoints in an un-
supervised manner. The results of the generator is used as soft constraints to guide
image-surface registration in the next section.

We take a similar approach as Kudo et al. [6] and Chen et al. [3] where the 3D
joint positions produced by a generator network (G) is projected to the image plane to
obtain 2D joint positions and a discriminator (D) judges real or fake in 2D image space.
The key difference of our model from previous approaches is that it incorporates joint
position supervisions produced by registration to gradually improve its performance. It
also incorporates geometric constraints, such as bone symmetry constraints, to further
constrain the space of solution. The network architecture is depicted in Fig. 2. The
input to the generator is the 2D key points of N joints and the output is depths of those
joints. The predicted depths values zi are then concatenated with xi and yi coordinates,
rotated around the vertical axis and projected to the image space. The discriminator
inputs the projected joint positions as fake and the 2D keypoint data as real. For
both networks, we use multi-layer perceptron (MLP) with eight linear layers to map
2D coordinates to depths and binary class.
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Figure 1: Overview of our deform-and-learn training strategy that iteratively performs
deformable registration and deep learning. Let θ be the parameters of the body model,
such as body shape and pose. In the very beginning, the initial pose of registration is
in the T-pose, θ0. Given dense image-to-surface correspondences, the first registration
step fits a template model to images. After registration, we obtain a collection of θfit

which is then used as supervisional signals θanno to train deep ConvNets that predicts
body parameters θconv. The results of ConvNets are used as initial poses of deformable
registration in the next round. These two steps are iterated to get better results.

Let u be the 2D joint positions of a skeleton. Also let us denote an angle around the
vertical axis as φ. Our 3D human pose cGANs uses the following standard adversarial
loss functions for G and D:

LGadv = Eu,φ[log(1−D(f(u, G(u);φ))) (1)

LDadv = E[logD(u)] (2)

where f denotes the rotation and the projection function. Note that we validate the pose
from multiple views, where we empirically set angles [deg] as φ = {45, 60, 90, 135, 180, 235, 270}
to validate each predicted pose. We could use more viewing angles but we found this
sufficient.

In addition to the adversarial loss, the geometric loss is also applied. Specifically,
we use the bone symmetry loss Lsym that constrain the left and right limb be similar
and the bone ratio loss Lratio that minimizes the difference between the normalized
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Figure 2: cGANs with geometric constraints for 3D human pose estimation. The input
to the generator is the 2D key points ofN joints and the output is depths of those joints.
Once the generator outputs the depths values zi, they are concatenated with xi and yi
coordinates. This 3D joint position is rotated about the vertical axis and projected
to the image space. The discriminator inputs the projected joint positions as fake
and the 2D keypoint data as real. In addition to the adversarial loss, we incorporate
geometric constraints to further constrain the space of solution. Furthermore, from the
2nd iteration, we incorporate a joint position loss to improve prediction accuracy.

bone length prediction and that of dataset. The bone ratio loss Lratio is defined as:

Lratio =
∑
e∈B
‖ le
ltrunk

− l̄e
l̄trunk

‖2 (3)

where le
ltrunk

is the ratio of the bone length for bone e in a set of bones B in a skeleton

with respect to the trunk length and l̄e
l̄trunk

is that of the average skeleton. Let Bs be the
set of symmetry pairs of bone segments which contains indices of bones e.g., the left
and right forearm. Then the bone symmetry loss Lsym is defined as:

Lsym =
∑
i,j∈Bs

‖li − lj‖2 (4)

where li and lj is the lengths of the bone for symmetry bone pairs. After the first
iteration, to improve estimation, we add a joint loss that penalizes the deviation of joint
position predictions from that of registration results. This is enforced as the MSE loss:

Ljoint =
∑
i∈J
‖pi − p̄i‖2 (5)

where pi is the joint position at joint i. We mix the above losses to train the generator
such that the loss is:

LG = εLGadv + Lratio + Lsym + µLjoint (6)

where ε is the weight for controlling the strength of the adversarial term, which we set
to 0.1 in this paper. mu is the weight for Ljoint which is decreased from 100 to 1.
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3 Image-surface deformable registration
We propose a deformable surface registration technique to fit a template mesh model
to images to obtain 3D body shape and pose annotations for training deep ConvNets.
Here deformable registration is formulated as a gradient-based method based on back
propagations, which can be implemented with a deep learning framework and par-
allelized with GPU. With the automatic differentiation mechanisms provided with a
deep learning framework, adding and minimizing various kinds of losses have made
easy and straightforward. As a result, the proposed deformable registration technique
thus incorporates kinematic, geometric and correspondence losses.

Given image-surface dense correspondences annotated on images, the template
mesh is fitted to images by optimizing body parameters θ = [a,S,R, s, t] subject
to kinematic and geometric constraints. In total, the overall loss function for our regis-
tration is of the form:

Lregist = ωdenseLdense + ωKPLKP (7)
+ ωscaleLscale + ωjointLjoint + ωdetLdet

where Ldense and LKP are the dense correspondence and key point losses that penalize
the alignment inconsistency of the body model and images defined in terms of dense
correspondences and key points. The losses Lscale and Ljoint is the segment scaling
smoothness and kinematic loss for regularization. The transformation determinant loss
Ldet makes the determinant of the global transformation positive. In addition, ωdense,
ωKP, ωscale, ωjoint and ωdet are the respective weights for the above defined losses. The
initialization of body parameters is provided from the predictions of deep ConvNets.
For the very first iteration where the Convnet predictions are not available, segment
scale S is set 1 for all segments and pose a is set to 0 for all joints, which means that
registration is started from the T pose.

3.1 Correspondence fit loss
The correspondence loss comprises two losses: the dense correspondence loss LDense

and keypoint loss LKP.
Dense correspondence loss Let us define a set of image-surface correspondences
C = {(p1,vidx(1)) . . . (pN ,vidx(N))}, where p is the image points. In addition idx(i)
is the index of the mesh vertices that is matched with image point i. Now we can define
the dense correspondence loss as:

Ldense =
∑
i∈C
‖pi − xidx(i)‖2 (8)

Here the mean squared error (MSE) between image point annotations pi and the cor-
responding points on a surface projected to the 2D image xidx(i) are calculated.
Key point loss To produce 3D poses with statistically valid depths, the results of
cGAN is used to guide deformable registration. Instead of attaching a discriminator to
the registration framework, the depth values from cGAN and the ground truth 2D joint
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coordinates are provided as a soft constraint to constrain the position of the 3D joints
based on the MSE loss:

LKP =
∑
i∈J
‖xi − x̄i‖2 +

∑
i∈J
‖yi − ȳi‖2 +

∑
i∈J
‖zi − zGAN

i ‖2 (9)

where x̄i and ȳi are the ground truth of 2D key points. Also zGAN
i is the depth at joint

i predicted by cGANs.

3.2 Geometric and kinematic loss
Since we attract the template mesh to 2D image coordinates, the problem is ill-posed
and deformations are not constrained. Thus we introduce the regularization terms that
avoids extreme deformations.
Segment scaling smoothness To avoid extreme segment scalings, we introduce the
scaling smoothness loss, which minimizes difference between scalings of adjacent seg-
ments:

Lscale =
∑
e∈B
‖Se − Sadj(e)‖2 (10)

Joint angle smoothness and limit loss To prevent extreme poses, we introduce joint
angle smoothness loss and joint limit loss. The joint smoothness loss is enforced at
every joint in a skeleton, J , and will contribute to avoid extreme bending. To avoid
hyper-extensions which will bend certain joints like the elbows and knees (where we
represent as J ′) in the negative direction, we introduce the joint limit loss. The regu-
larizations that act on joints are thus represented as:

Langle =
∑
i∈J
‖ai‖2 +

∑
i∈J ′

‖exp(ai)‖2 (11)

where the first term minimizes joint angles whereas the latter term penalizes rotations
violating natural constraints by taking exponential and minimizing it.
Transformation determinant loss Since we use a rotation matrix for representing the
global rotation at the root, it is necessary to apply a constraint on a matrix to keep its
determinant to positive. Thus, we define the transformation determinant loss as:

Ldet = exp(−det(R)) (12)

4 Estimating 3D body shape and pose from a single im-
age

4.1 Deep ConvNets for body shape and pose regression
Using the results obtained by deformable registration as annotations for training deep
ConvNets, we regress body shape and pose parameters with an image. We also add the
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dense correspondence and keypoint losses as in Section 3.1 for additional supervisions.
In total, we minimize the loss function of the form:

Lconv = αLregress + βLdense + γLKP (13)

where Lregress is the regression loss for body parameters. α, β and γ are the respective
weights. Let θi be the parameters for i-th sample, the regression loss is defined as:

Lregress =
∑
i

smoothL1(θi − θ̄i) (14)

where θ̄ is the annotation provided from the registration step. Here we use the smooth
L1 loss because of its robustness to outliers. This choice was more effective than the
L2 loss in contributing to decreasing the error during the iterative training strategy in
the presence of potential outliers and noisy annotations.

The body model is similar to the one we used for registration, except for the pose
representation, where we found that the use of quaternions improved stability and con-
vergence of training than axis angle, which is probably due to the fact that the values of
quaternions are in between -1 and 1 and is easier for ConvNets to learn with than axis
angles. Other parameters are same as the ones used in Section 3, which results in 132
parameters in total. Note that the global rotation is regressed using 9 parameters and
the Gram Schmidt orthogonalization is used to make a transformation into a rotation.
We use ResNet50 [4] pretrained on the ImageNet dataset as the base network.

5 Experimental results

5.1 Implementation and training detail
Our method is implemented using Pytorch. We use the Adam optimizer for all the steps
in our approach. Training takes 2-3 days using a NVIDIA Quadro P6000 graphics card
with 24 GB memory. At each iteration, the multi-view cGANs is trained for 50 epochs
with the batch size of 1024 and the learning rate of 0.0002. The body regressor is
trained for 30 epochs with the batch size of 30 and the learning late of 0.0001. We set
the parameters in the loss function to α = γ = 1 and β = 10. For deformable surface
registration, we use the learning rate of 0.1 and batch size of 10. We empirically set the
parameters to ωdense = 1000, ωKP = 1, ωscale = 10, ωjoint = 0.001 and ωdet = 1. For
the first training iteration, in order to recover a global rotation, we set ωscale = 100 and
ωjoint = 1 to make the body model stiff, which is a common strategy in deformable
registration [1]. We perform 300 forward-backward passes during the registration step
at the 1st iteration. From the second iteration, 100 forward-backward passes were
sufficient, since we start from the ConvNet prediction.

5.2 Dataset
DensePose DensePose dataset [10] contains images with dense annotations of part-
specific UV coordinates (Fig. 3), which are provided on the MS COCO images. To

6



Figure 3: Dense image-surface correspondences between the template body surface
and image points are found from DensePose annotations [10] by searching nearest
points in the UV space of each body part.

obtain part-specific UV coordinates, body surfaces of a SMPL human body model are
partitioned into 24 regions and each of them are unwrapped so that vertices have UV
coordinates. Thus, every vertex on the model have unique parameterizations. Images
are manually annotated by human annotators with part indices and UV coordinates to
establish dense image-to surface correspondences.

To use this dense correspondences in 3D model fitting, we find the closest points
from image pixels to surface vertices in UV coordinates of every part. The nearest
neighbor search is done in this direction because image pixels are usually coarser than
surface vertices. We were able to obtain approximately 40k annotated training images.
DensePoseTrack We also use 7k images from the DensePoseTrack dataset [8], where
labeling is done by a semi automated annotation method of dense correspondences
using motion cues to propagate annotations through time.
Human3.6M Human 3.6M dataset is a large scale dataset [5] for 3D human pose
detection. This dataset contains 3.6 million images of 15 everyday activities, such
as walking, sitting and making a phone call, which is performed by 7 professional
actors and is taken from four different views. 3D positions of joint locations captured
by MoCap systems are also available in the dataset. In addition, 2D projections of
those 3D joint locations into images are available. To obtain dense annotations for
this dataset, we use Mosh [7] to obtain SMPL body and pose parameters from the
raw 3D Mocap markers and then projected mesh vertices onto images to get dense
correspondences between images and a template mesh. We collected 65k images with
dense correspondence annotations.
MPII 2D human pose 2D keypoint labels in this dataset were used to train the cGANs.
The images from MPII 2D human pose dataset [2] is used for testing and was not used
in training.

5.3 Protocol and metric
We followed the same evaluation protocol used in previous approaches [9, 11] for eval-
uation on Human3.6M dataset, where we use 5 subjects (S1, S5, S6, S7, S8) for training
and the rest 2 subjects (S9, S11) for testing. The error metric for evaluating 3D joint
positions is called mean per joint position error (MPJPE) in mm. Following [11] the
output joint positions from ConvNets is scaled so that the sum of all 3D bone lengths
is equal to that of a canonical average skeleton.
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Figure 4: Qualitative result. From left to right: original image, overlay, 3D reconstruc-
tion results viewing from the front and side. Our technique is able to recover body
shape and pose from in-the wild images. Note that the viewing distance of the 3D
reconstruction does not exactly match with that of an input image.

We also evaluate the fit of the body model to images based on the mean per pixel
error and mean per vertex error which measures distances from the ground truth to
the predicted vertices in 2D image space and 3D space. Prior to calculating the per-
vertex error, we obtain a similarity transformation by Procrustes analysis and align the
predicted vertices to the ground truth.

5.4 Qualitative results
In Figs. 4 we show our results on body shape and pose estimation.
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