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Abstract

This paper investigates a first order generalization of signed distance fields. We show that we can improve accuracy and storage
efficiency by incorporating the spatial derivatives of the signed distance function into the distance field samples. We show that
a representation in power basis remains invariant under barycentric combination, as such, it is interpolated exactly by the
GPU. Our construction is applicable in any geometric setting where point-surface distances can be queried. To emphasize the
practical advantages of this approach, we apply our results to signed distance field generation from triangular meshes. We
propose storage optimization approaches and offer a theoretical and empirical accuracy analysis of our proposed distance
field type in relation to traditional, zero order distance fields. We show that the proposed representation may offer an order of
magnitude improvement in storage while retaining the same precision as a higher resolution distance field.
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e Computing methodologies — Ray tracing; Volumetric models;

1. Introduction and previous work

Signed distance fields (SDF) are discretizations of continuous
signed distance functions. They store the signed distance to the
closest geometry at every sample. By applying a reconstruction fil-
ter, i.e. by blending the sampled values, they convey global geo-
metric information about the scene at every point in space.

Distance fields mostly serve as auxiliary data structures in three-
dimensional real-time computer graphics to provide effects like
soft shadows from area lights, ambient occlusion, or sky visibil-
ity [Wril5]. In addition, they can be also used as a primary ge-
ometric representation on current generation hardware, as shown
in [Aal]. SDF representations proved to be especially efficient for
font rendering [Gre07]. Advances were also made in decreasing
storage requirements [FPRJO0] and increasing accuracy [KDB16].

Our paper shows that both of the above improvements can be
achieved by treating the reconstruction of a continuous signed dis-
tance function from samples as an approximation problem. In Sec-
tion 2, we use Taylor’s approximation theorem to justify the incor-
poration of higher order derivatives of the signed distance function
in the distance field samples. The order of the highest derivative
is referred to as the order of the distance field in this paper. Sec-
tion 3 discusses how such representations can be filtered. Section 4
provides a practical construction algorithm for first order distance
fields. In Section 5, we show that these are simultaneously more
accurate and, as a result, more efficient in terms of storage than the
classic, zero order uniform distance fields. Examples are presented
that this storage gain can be over an order of magnitude, at the ex-
pense of an up to 10% performance hit in direct visualization.
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2. Preliminaries

The approximation of a continuous function from samples has two
main components: (i) the actual data to represent the samples and
(if) a reconstruction scheme that combines the samples to form a
globally defined approximation.

In case of traditional distance fields, such as in [Gre07], a uni-
form grid stores the f; signed distances of the grid points to the
scene geometries. Our main insight is that we can consider these
distance samples as zero order Taylor approximations to the global
signed distance function f : E? — R. This allows us to general-
ize the construction and to quantify the increase of accuracy due to
storing higher order derivative data at sample points.

Letoo=(0,...,0,) denote a multi-index where |ot| = ot; +- -+

O, x* =21, 0% =00y fo ol = !l The
degree k multivariate Taylor polynomial about x is
9%f(xo0)
Texy(¥) = ), — 7 (x—x0)%, M
o <k ’

that is, indeed Tp x, = f(xo). In general, the approximation proper-
ties of Tj x, (x) are characterized by

Theorem 1 (Taylor’s theorem). Let f: R" — R such that f € citl
onan S C R" convex set. ThenVxy € S:Vx €S :

9%f (%)

J (%) = Ty, (%) + (x—2x0)*

|o|=k+1

where ¥ = (1 —c¢)-x9 + ¢ x for some ¢ € (0,1).

If all derivatives are bounded by some constant M > 0, then
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| () = Tz (x)| < ﬁ [|x —x0] |11<+1 . Therefore, a single distance
sample has an approximation order of 1 at regular regions, i.e. out-
side the medial axes of the represented geometries. Note that this
approximation order is an actual bound on the maximum error, not

just a polynomial precision property.

3. Approximation with first degree polynomials

In 3D, we can increase the local approximation order to 2 at ev-
ery sample x; by storing the T} x,(x) = f(x;) + 0« f (%) - (x —x;) +
Oy f(x;) - (y —yi) + 9.1 (x;) - (z— z;) first degree Taylor polynomial
approximation of the signed distance function.

However, there are multiple bases to represent a polynomial such
as (1). By stipulating that evaluation in the base should be invari-
ant under trilinear filtering, we show that the global power basis
is an adequate choice. Indeed, invariance under linear interpolation
means that the order of evaluation and interpolation can be inter-
changed. It trivially holds for the power basis:

(1—=1) Ty, (x) +1- Ty ; (%) =
(1—1)- (aix+biy+ciz+d;) +1- (ajx+bjy+cjz+dj) =
(1 =t)aj+taj)x+ ((1—1)bj+1bj)y+
((1 —t)Ci+th)Z+(1 —t)di+tdj

Invariance under bi- and trilinear interpolation follows immediately
from the above. The a;, b;, c;, d; coefficients are computed from the
signed distance function as

Fi) +0xf (i) - (x = x3) + 0y f(xi) - (v —yi) + 0o f (xi) - (2 — i) =

Ox f ;) x4 Oy f(x;) -y + 9 f (%) -z + )
di bi Ci

F(x;) = O f(x;) - x; — Oy f(x) - yi — O f (i) - zi

d;

Note that the above construction can approximate arbitrary func-
tions, it is not restricted to signed distance functions. For our partic-
ular use case, the a;, b;, c; coefficients of the linear Taylor approx-
imation coincide with the partial derivatives of the signed distance
function, i.e. they form a unit vector and only posses two scalar
degrees of freedom.

4. First order SDF in practice

In this section, we investigate the problem of constructing
a uniform grid of linear Taylor approximations a;j = a; =
(ai,bi,ciydi) = Ty, (%) = aix + biy + ¢;z+ d;, where the coeffi-
cients are as in Equation (2). Let Ax,Ay,Az > 0 denote the grid
sample spacing along the X,Y,Z axes, respectively, and let 0 € E?
be the origin of the distance field (in the sense that it contains
the smallest x,y,z coordinates). Then the position of sample i is
Xi=o0+[i-Ax,j-Ayk-A7]T.

Since our input is assumed to be a piece-wise linear approxi-
mation of a smooth surface, we cannot rely on the analytic partial
derivatives of the exact signed distance function. Even if such was
obtainable for a particular geometry, it is still a debatable choice
given that our construction has to adapt to arbitrary grid spacing.

As such, merely taking the signed distance function of the closest
triangle does not suffice, since it may convey locally too limited
information about the SDF in relation to the grid size.

Instead, we propose to use a finer grid about x;, denoted by s;; =
Xi+[i-Aa,j-Abk-AdT, j=(i,j,k) € {—H,...,H}. Once we
obtain an { f(s;;)|j € {-H.,... 7H}3} set of distance samples, we
fit a plane to them in the distance space as

1 x1 y1 7 a bil
L' xn » 2 b f2 (3)
. . . . c :
1 xyv yw v d N
[ ——
X a f

where we have flattened the three dimensional arrays s;; and f; into
[x1,y1,21], [*2,¥2,22],--. and [f1, f2,...], respectively. The extent
of the fine grid can be considered as a level-of-detail control.

The least-squares solution to (3) is @ = X - f, where X de-
notes the Moore-Penrose pseudo-inverse of X. If the column vec-
tors of X are linearly independent, it can be expressed as X =
(xT.x)~!'. X" In addition, one could also incorporate weight-
ing into the fitting process to reduce the significance of far-away
samples. Note that the samples need not be taken on a regular grid.

If the same fine grid structure is used for every s;;, X * only
needs to be pre-computed in the origin centered configuration, de-
noted by X . Using X4 at x; instead of the local matrices simply
translates the world origin to x; in Equation (3). To obtain the global
world space coefficients of the Taylor polynomials we merely have
to factor a- (x —x;) +b-(y—yi) + ¢+ (z—z) +d in terms of the
global power basisasa-x+b-y+c-z+d—a-xij—b-y;—c-z .

Algorithm 1 and Figure 1 summarize the above construction.

In : Input geometry; o € E? origin; N,M,K € N*

resolution; Ax, Ay, Az > 0 grid sizes; s, origin
centered fine grid with Aa, Ab, Ac > 0 sizes,
je{—H,....HY}; H e N*; X pseudoinverse

Out: (aj,bj,ci,d;), i € [1,N] x [1,M] x [1,K] linear DF

for allie [1,N] x[1,M] x[1,K] do
1. Compute sample location x; <— 0+ [i- Ax, j - Ay, k- AZ]T
2. Sample distance function on translated fine grid

fj — f(s,-]-) = f(x,-+soj), je {—H,...7H}3
. Flatten fine grid samples into f < [f,... 7f(2H+1)3]T
. Compute linear approximation @ « X3 - f
. Translate @ to x;: &; < (d,b,¢,d —[d,b,é] - x;)

AN L bW

. Normalize for final sample a; < a;/ /d% + lN)% + 5%

end
Algorithm 1: Uniform linear distance field construction.

Trilinear filtering of a first order field first computes the trilinear
interpolation between the a;, b;, ¢, d; coefficients of the 8 closest
Taylor approximations, then evaluates the resulting polynomial us-
ing the coordinates of the query position x in (2). Nearest neighbor
filtering fetches and evaluates the closest first order approximation.

5. Results

We implemented order zero and one distance fields in a C++
OpenGL framework. All distance fields consisted of equidistant

(© 2020 The Author(s)
Eurographics Proceedings (© 2020 The Eurographics Association.



R. Bdn, G. Valasek / First Order Signed Distance Fields 35

Figure 1: The first order grid sample x; (red point on left) uses
distance samples on the fine grid (center) to fit a plane (right).
samples. We refer to the first order distance fields as Taylor distance
fields (TDF) in the tables below. The input geometries were nor-
malized to the [—1,1]° region of space. The performance tests were
carried out on an NVIDIA GeForce 1070 Ti and 2080 at Full HD
resolution.

A direct visualization scenario was used for the distance field
query. We rendered the given input distance field with sphere trac-
ing followed by 10 binary search root refinement steps.

The tests were performed on an analytic test scene consisting
of a sphere and two scenes of triangular meshes, a bunny and a
dragon model, see Figure 2. Generating a sign-correct distance field
from arbitrary triangular meshes is in itself a challenging problem.
We used Krayer and Miiller’s [KM19] application to generate a
high resolution (256 x 256 x 256), zero order distance field of the
meshes for ground truth and a base for higher order constructions.

5.1. Fine grid resolution and extent

There are two degrees of freedom in the fine grid specification:
(i) the (2H + 1) number of samples in the fine grid and (ii) the
Aa,Ab,Ac > 0 fine grid spacing along the X, Y, and Z axes.

First, we measured how fine grid sample counts affect TDF ac-
curacy. We varied samples from 231093, Increasing sample counts
had a very minor error mitigation effect. We have chosen 3% sam-
ples (H = 1) as a go-to fine grid resolution.

Then we measured how the extent of the fine grid alters the re-
sulting TDF. Fine grid spacing was measured relative to the dis-
tance to the next sample, e.g. Aa = 1 means that the fine grid sam-
ples reach the neighboring sample position along the X axis. Ac-
cording to our tests, the larger the span (Aa, Ab, Ac), the larger the
error becomes. We chose A := Aa = Ab = Ac = 0.1 as our default,
which resulted in a common local minimum error for all test scenes.

5.2. Accuracy

We compared the accuracy of zero and first order distance fields of
the same resolution, the latter being always the more accurate.

Accuracy tests resampled lower resolution (83 to 1283, see table
above) zero and first order SDFs to a 256° zero order distance field
that coincided with our ground truth. Upscaling used nearest neigh-
bor resampling. We computed the mean error on this high resolu-
tion grid. Errors are the absolute differences between the resampled
distance values and the 256° ground truth field values.

The next set of tests focused on finding the zero order SDF sizes
that matched the error of a given resolution first order Taylor DF.
The first row of the following table shows the size of the first or-
der distance field for the three models; the second to fourth the size
of the smallest zero order SDF matching the error. Empty entries
denote no matching zero order SDF up to 128°. The TDF of reso-
lution 51° was of higher accuracy than any 1283 zero order SDF.

TDF | 8 100 123 168 203 253 323 40

sphere | 40° 64° 1023

bunny | 163 403 513 64> 813 1023 1283

dragon | 16> 203 323 64® 813 102> 128 1283

5.3. Storage

The naive approach for storing first order data is to use 4 float-
ing point numbers for a;, b;, ¢, d;, making a first order sample four
times as expensive in storage. Nevertheless, when comparing zero
and first order storage of the same accuracy, TDF can be up to an
order of magnitude more efficient, as summarized below.

Istdim  scalars | Oth dim scalars 1st order storage %

83 2048 163 4096 50%

103 4000 203 8000 50%

123 6912 323 32768 21.09%
163 16384 643 262144 6.25%
203 32000 813 531441 6.02%
253 62500 1023 1061208 5.89%
323 131072 1283 2097152 6.25%

SDF sphere error bunny error dragon error
dim ” Oth Ist | Oth Ist | Oth Ist
83 0.0299  0.0061 0.029 0.017 0.027 0.016
163 0.0149  0.0010 0.015 0.0037 0.014  0.0044
323 0.0074  0.0002 | 0.0074  0.0018 | 0.0074  0.0020
643 0.0036  0.0001 0.0036  0.0011 0.0037  0.0015
1283 0.0017  0.00005 | 0.0017  0.00097 | 0.0017  0.0014

(© 2020 The Author(s)
Eurographics Proceedings (© 2020 The Eurographics Association.

We used the worst case for the first order TDF, i.e. the row of the
dragon. Even so, on the most relevant resolutions where fine details
emerge (16> onwards), the first order TDF only requires about 6%
of the scalar storage of the zero order SDF for the same accuracy.

Due to the relatively small metric extent of our test models, it did
not matter whether we used 16 or 32 bit floats in the implementa-
tion. The precision of both the zero and first order distance fields
remained the same statistically.

Storage can be further optimized for first order TDFs. Since the
linear coefficients form a unit vector, we can encode them with
octahedral mapping [MSS*10] and pack all the a;,b;,c;,d; in 32
bits. We tested several distributions of bits and a clear optimum for
all three test models was the 10 + 10 + 12 distribution, i.e. 10 bits
for each of the two octahedral coordinates and 12 bits for the con-
stant term in snorm. Packing introduces error to the approximation
compared to the unpacked field; the error is at most 1% larger for
smaller resolutions (up to 20%) and grows to 28% at higher reso-
lutions (128%), due to the reduced floating point precision. In ex-
change, TDF storage requirements are halved by this technique.

5.4. Performance

The distance fields were trilinearly filtered for performance tests.
Although our proposed construction is compatible with hardware
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(a) Oth order 83 (b) Ist order 83

(¢) Oth order 163

(d) Ist order 163

(e) Oth order 323 (f) Ist order 323

Figure 2: Comparison between zero order and first order SDFs on different models. Note the additional detail of first order fields.

L B

(a) Zero order SDF (b) First order SDF

Figure 3: Error comparison between a zero order and a first order
16% distance field. Small absolute error in green, large in red.

filtering, it must be noted that certain applications may not be able
to take advantage of this due to the limited precision in which tex-
ture filtering is handled in hardware [NVI19]. In such cases, inter-
polation has to be implemented manually in the shaders. Similarly,
packing also forces manual fetch, decode, and interpolation of data.

The following table summarizes the 100-frame average render
times in milliseconds. The fourth column contains the relative in-
crease of render times using the same resolution first order DF in-
stead of the zero order field.

sphere Oth Ist perf
1070 Ti 1.25614 ms 1.55074 ms 123.45%
2080 0.716773 ms ~ 0.916037 ms | 127.80%
bunny Oth Ist perf
1070 Ti 1.16 ms 1.30086 ms 112.32%
2080 0.64 ms 0.718491ms | 112.71%
dragon Oth Ist perf
1070 Ti 1.19 ms 1.41792 ms 118.93%
2080 0.617716 ms  0.717756 ms | 116.20%

The standard deviation of render times was in the order of 107>
for all configurations. In general, using the first order Taylor dis-
tance field adds 12-28% to the render times. However, using the
same accuracy but lower resolution TDF, this difference shrinks to
an up to 10% performance hit. The following table compares render
times (ms) of zero and first order SDFs with similar accuracy.

Oth | 0.53(16%) 0.53(20%) 0.55(32%) 0.57(64%) 0.6 (813)
Ist | 0.56(8%)  0.58(10%) 0.59(12%) 0.62(16%)  0.66 (20°)
perf | 105.66% 109.43% 107.27% 108.77% 110.00%

Packing introduced a 2 — 5 times overhead compared to non-
packed, hardware interpolated figures.

6. Conclusions

This paper presented a first degree Taylor approximation based rep-
resentation of signed distance fields. Storing higher order approx-
imations proved to be a more efficient way to utilize the available
bits of storage than the brute-force increase of lower order samples.
These approximations have to be represented in a global basis, such
as the global power basis to use GPU hardware interpolation.

We proposed a general first order signed distance field construc-
tion algorithm that can be applied in an arbitrary geometric context.
Storage can be further optimized by using octahedral encoding.

Our empirical tests demonstrated that storage could be reduced
down to 6% of the original zero order SDF size while retaining the
same accuracy. The trade-off for this increase in storage efficiency
is an increase of at most 10% in direct render times. Moreover, our
Taylor-based construction can be applied to the approximation of
arbitrary functions, it is not restricted to signed distance functions.
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