
EUROGRAPHICS 2020/ F. Banterle and A. Wilkie Short Paper

Multisample anti-aliasing in deferred rendering

A. Fridvalszky and B. Tóth

Budapest University of Technology and Economics

Abstract

We propose a novel method for multisample anti-aliasing in deferred shading. Our technique successfully reduces memory and

bandwidth usage. The new model uses per-pixel linked lists to store the samples. We also introduce algorithms to construct the

new G-Buffer in the geometry pass and to calculate the shading in the lighting pass. The algorithms are designed to enable

further optimizations, similar to variable rate shading. We also propose methods to satisfy constraints of memory usage and

processing time. We integrated the new method into a Vulkan based renderer.

CCS Concepts

• Computing methodologies → Rasterization; Antialiasing;

1. Introduction

Deferred shading based rendering algorithms are popular in real-

time three-dimensional applications, because they allow orders of

magnitude more light sources than with classical forward shading

algorithms. The disadvantage is that we cannot use the built-in mul-

tisample anti-aliasing algorithms of the GPU (MSAA). There are

multiple solutions for this problem, but the increased memory and

bandwidth consumption of the renderer is a common drawback. For

this reason, it is typical to use post processing based anti-aliasing

methods (e.g., FXAA). These techniques try to find and then blur

edges on the picture, instead of sampling it with higher frequency.

These methods are much faster than MSAA but they cannot always

produce correct results, the picture may become blurry or fast cam-

era movements may result in visible artifacts.

1.1. Deferred shading

Deferred shading [ST90] is a rendering technique that aims to in-

crease the usable number of light sources in a scene or reduce the

computational cost of lighting in case of complex geometry. The

main idea is to divide the problem of rendering into two parts, the

geometry pass and the lighting pass.

During the geometry pass the scene geometry is rasterized, but

no shading is performed. Only the necessary attributes are collected

(e.g., albedo, normals, depth) and stored in the so called G-Buffer.

It is generally implemented as several frame sized textures, where

every texel stores the corresponding pixel’s data.

During the lighting pass light sources are processed. The clas-

sical approach rasterizes point light sources as spheres, where the

radius corresponds to the effective range of the light. Tiled deferred

shading [LHA∗09] divides the camera space into smaller parts and

generates a list of affecting light sources for each. The goal of both

techniques is to reduce the number of unnecessary shading calcula-

tions and make the processing time of light sources independent of

the scene geometry. During shading the G-Buffer is accessed and

results are accumulated.

1.2. Multisample anti-aliasing

Aliasing (Figure 1) is a common problem during rendering. When

we rasterize the scene geometry, the sampling rate is too low and

aliasing occurs. The visible results are the jagged edges in the final

image. One method to solve this is supersampling which renders

the scene in a higher resolution than the target, then downsamples

it. This solution targets the root of the problem, the low sampling

frequency, but is very costly in real time environments.

Multisample anti-aliasing (MSAA [PMH02]) is a hardware ac-

celerated optimization of supersampling. It aims to reduce the num-

ber of shading calculations by only doing supersampling where it

is necessary. These parts are the edges of the rasterized triangles,

where large differences can occur in the final color. With MSAA we

still store multiple samples per pixel (just like with supersampling),

but shading is only performed for some of them. Where the raster-

izer detects that a triangle covers some sample in a pixel, it invokes

the fragment shader only once, but the result will be written to each

covered sample. After that, samples are averaged to compute the

final color of the pixel.

1.3. Deferred shading with MSAA

When multisampling is applied to a deferred renderer we can no

longer use the basic hardware accelerated process. The whole G-

c© 2020 The Author(s)

Eurographics Proceedings c© 2020 The Eurographics Association.

DOI: 10.2312/egs.20201008 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-5570-1280
https://orcid.org/0000-0002-3684-8500
https://doi.org/10.2312/egs.20201008

A. Fridvalszky & B. Tóth / Multisample anti-aliasing in deferred rendering

Figure 1: Results of anti-aliasing. From left to right: NO AA,

FXAA, 8× MSAA, Proposed Algorithm.

Buffer must be created with higher sampling frequency (using

MSAA). The information about pixel coverage must be stored in

the G-Buffer. Increased size can already become a problem for mo-

bile devices, but the memory bandwidth consumption makes it very

taxing on desktop GPUs as well. A further problem is that during

the lighting pass we do not want to calculate shading for dupli-

cated sample data. A complex logic to select the unique samples

for shading is unpractical for the massively parallel nature of the

GPU, but if we settle with less accurate selections (e.g., simple,

and supersampled pixel), then it will result in many unnecessary

calculations.

In this work we target the previously mentioned problems with

the combination of deferred shading and MSAA. We introduce a

new method to mitigate these and implement it in a physically

based renderer with Vulkan and C++.

2. Related work

To apply anti-aliasing Reshetov [Res09] proposed a post-

processing based approach, which worked by searching various

patterns in the final image and blending the colors in the neigh-

borhood. It can be used efficiently in a deferred renderer. Lottes et.

al [Lot09] and Jimenez et. al [JESG12] proposed similar techniques

which applied various enhancements to the original approach. Cha-

jdas et. al [CML11] used single-pixel shading with subpixel vis-

ibility to create anti-aliased images. Another branch of the anti-

aliasing tehcniques uses previous frames to solve the problem. A

recent variant, proposed by Marrs et. al [MSG∗18] combines it

with supersampling and raytracing. Liktor et. al [LD12] proposed

an alternative structure for the G-Buffer which allows efficient stor-

age of sample attributes. They used this structure both for stochas-

tic rendering and for anti-aliasing. Crassin et. al [CMFL15] pro-

posed a method for deferred renderers that reduces the stored and

shaded sample count by merging samples that belong to the same

surface. Schied et. al [SD15] replaced per-pixel samples with a tri-

angle based representation to reduce the memory requirements of

the G-Buffer. Our implementation of the G-Buffer uses a similar

structure to the A-buffer, proposed by Carpenter et. al [Car84].

3. The proposed algorithm

The main problem of multisampling in case of deferred shading

is the redundant storage of samples. The standard G-Buffers use

textures to store per-pixel data. In case of multisampling we need

larger textures to make space for more samples. By using 8× mul-

tisampling we effectively need eight times more memory. Most of

this storage is unnecessary, because large part of the screen requires

only 1-2 samples. This redundancy also causes further problems.

MSAA is better than supersampling because it computes the shad-

ing on multiple samples, only where edges are found. This works

for forward renderers, but during the lighting pass of a deferred

renderer, this information is not available. It means that we must

recover it manually or use supersampling, effectively losing all the

benefits of MSAA.

Overview of the proposed technique is presented on Figure 2.

The G-Buffer is divided into two parts. The first one contains one

block of data for each pixel. It represents the standard G-Buffer and

also contains the heads of per-pixel linked lists which store data

for the rest of the samples, originating from the same pixel. These

linked lists are in the second part of the G-Buffer.

D
ep

th
 p

as
s

G
eo

m
et

ry
 p

as
s

L
ig

h
ti

n
g

 p
as

s

Render targetCustom G-Buffer

fill read
fill

Depth buffer

Geometry Light sources

fill

1920×1080

8× MSAA 1920×1080 1920×1080max sample count

read

Standard part Extended part

Figure 2: Summary of the proposed algorithm.

The idea is to construct the G-Buffer to prevent redundancy.

Then during the lighting pass we know for certain that every block

of data must be shaded and no unnecessary calculations will be

done. The required size for the G-Buffer is reduced too.

To construct the G-Buffer, scene geometry is rasterized normally

using the maximum desired multisampling frequency. The target

framebuffer contains only a depth buffer with appropriate sampling

rate. According to the behavior of standard multisampling, the frag-

ment shader is invoked for every triangle-pixel intersection and

each invocation represents one or more samples. The future con-

tents of the G-Buffer are collected and calculated normally. The

covered samples are checked if they contain a previously specified

index. If that is the case, then the data is written into the first part

of the G-Buffer. Otherwise a new block is allocated from the sec-

ond part by using an atomic counter. The block is connected to the

c© 2020 The Author(s)

Eurographics Proceedings c© 2020 The Eurographics Association.

22

A. Fridvalszky & B. Tóth / Multisample anti-aliasing in deferred rendering

pixel’s linked list with an atomic operation and the data is written

into it. This way the G-Buffer becomes free of redundancy except

for one case. That is when hidden objects are rasterized before the

visible ones. We solve this by running a depth-only Z-prepass be-

fore the geometry pass.

During the lighting-pass the shading can be done by traversing

the linked lists or the G-Buffer itself in an unordered manner, ac-

cording to the implementation of the light sources. Our implemen-

tation followed the first approach. The light sources are stored in a

buffer and for every sample we accumulate the shading for every

light source. Then the results are averaged. This implementation

of light sources is hardly optimal because every light source influ-

ences every part of the screen, even where its effect is unnoticeable.

We chose this method because it is straightforward to implement.

It is also easy to extend to tiled deferred shading, a popular variant

of standard deferred shading.

4. Implementation

In the following sections we highlight the important details of our

implementations.

4.1. The G-Buffer

Our implementation used the physically based Cook-Torrance

shading model. According to this we need the following attributes:

albedo, normal, roughness, metallic, ambient occlusion factor (ao).

We also need a pointer to construct the linked list.

1. bit 8. 16. 24. 32. bit

albedo1 (RGB) metallic1

albedo2 (RGB) metallic2

normal1

normal2

roughness1 roughness2 ao1 ao2

pointer1

pointer2

Figure 3: Structure of one block in the G-Buffer, where every sam-

ple uses 112 bits.

We interleave every two blocks of data to prevent any unneces-

sary padding (Figure 3).

1. bit 26. 29. 32. bit

index sample count sample index

1. bit 32.

next pointer pre-allocated blocks dynamic blocks

Figure 4: Structure of the pointer and the G-Buffer.

As we can see in Figure 4 (top), the pointer consists of three

parts, where 3 bits are needed to store the number of covered sam-

ples and another 3 bits to store the index of one of these samples.

The latter is needed to read the correct depth from the multisam-

pled depth buffer. These refer to the pointed block. Remaining bits

are used for the index of the next block.

The final structure of the G-Buffer is in Figure 4 (bottom). The

number of pre-allocated blocks must match the number of pixels.

The number of dynamic blocks depends on the available memory,

performance constraints and required quality.

4.2. Light sources

We only used point light sources in our implementation. We also

implemented it as a uniform buffer and every fragment shader invo-

cation iterated over the entire list. It is inefficient, but allows better

insight into the performance characteristics of our algorithm.

The performance directly depends on the number of shading cal-

culations. The number of light sources (and their implementation)

affects it, but only because it increases the shading cost. So by

applying smarter light source implementation, like tiled deferred

shading, we would not change the direct performance hit of our

algorithm.

It is also easy to incorporate these optimizations within our

method. For example, construction of the culled light source buffers

can be directly added to our solution. The global light source list

must be exchanged with the dynamically constructed buffers in the

shader, but no other actions are required.

4.3. Shadows and transparent materials

In our implementation we chose to not implement shadows or trans-

parency. Transparency is a common problem for deferred render-

ers and they are generally handled separately. Shadow calculation

works well with deferred renderers, the most popular solutions are

shadow mapping and its variations. Our approach does not interfere

with these methods.

5. Evaluation

We benchmarked the performance characteristics of our imple-

mentation on multiple GPUs (Nvidia GTX970 and GTX1050). We

compared the processing time and memory usage to an implemen-

tation without anti-aliasing, to a version of FXAA and to the tradi-

tional implementation of MSAA.

Figure 5: Test scenes used during evaluation.

We used three test scenes. These scenes contain 1.4, 8.7, and

23.8 million vertices, respectively (Figure 5).

First we measured the required memory for 1920×1080 resolu-

tion (Table 1). Our proposed method has flexible memory require-

ments so only minimum and maximum values are given. In case

of minimum values no anti-aliasing will be performed. The actual

memory requirements for full anti-aliasing depend on the scene ge-

ometry (Figure 6).

c© 2020 The Author(s)

Eurographics Proceedings c© 2020 The Eurographics Association.

23

A. Fridvalszky & B. Tóth / Multisample anti-aliasing in deferred rendering

No

AA

MSAA Proposed algorithm

4x 8x
4x 8x

Min Max Min Max

G-Buffer 23.73 94.92 189.84 27.69 110.74 27.69 221.48

Z-Buffer 7.91 31.64 63.28 31.64 31.64 63.28 63.28

Total 31.64 126.56 253.12 59.33 142.38 90.97 284.76

Table 1: Memory consumption of the anti-aliasing methods in

Mbytes.

Figure 6: Complex scene for memory requirements. It needs

115.31 MB memory for 8× and 75.01 MB for 4× anti-aliasing.

In the 8× case it is even smaller than the memory requirements of

the traditional 4× MSAA implementation.

We also measured the processing times of the anti-aliasing algo-

rithms. As we can see in Table 2, our algorithm performs well in

environments where large number of shading calculations must be

performed. On small scenes with many light sources it can even ap-

ply better anti-aliasing while remaining faster than the previous so-

lution. It reacts well to larger anti-aliasing settings too (left of Fig-

ure 7), because it never does any unnecessary calculations. Large

scene geometry can present a problem, because of the Z-prepass,

but only in extreme cases and it still outperforms the traditional

method (right of Figure 7).

1.2

1.7

2.2

2.7

3.2

3.7

2x 4x 8x

Anti-aliasing setting

3. Scene - 50 Light Sources

Proposed MSAA

1.2

1.7

2.2

2.7

3.2

3.7

5 20 50

Number of light sources

3. Scene

MSAA 4x MSAA 8x

Proposed 4x Proposed 8x

Figure 7: Relative processing times of the algorithms with differ-

ent anti-aliasing settings (left) and number of light sources (right).

The measured values represent the relative performance of the tech-

niques, compared to the implemantation without anti-aliasing.

 MSAA Proposed algorithm

 4x 4x 8x

1. scene 5 light sources 5.2648 3.8092 4.3629

1. scene 50 light sources 21.987 12.5951 14.0772

2. scene 5 light sources 7.9021 8.1721 8.97702

3. scene 5 light sources 14.069 19.1354 21.3446

3. scene 50 light sources 33.293 31.7038 38.6841

Table 2: Computation times of the anti-aliasing methods (ms).

6. Conclusion

The proposed algorithm can apply multisample anti-aliasing in

a deferred renderer without unnecessary memory allocations and

complex shading logic of traditional methods. The flexible data

structure of the G-Buffer prevents any redundancy and makes pos-

sible to specify strict requirements about performance and memory

consumption.

7. Acknowledgements

This work has been supported by OTKA K-124124, and by the

EFOP-3.6.2-16-2017-00013.

References

[Car84] CARPENTER L.: The a-buffer, an antialiased hidden surface
method. In Proceedings of the 11th annual conference on Computer

graphics and interactive techniques (1984), pp. 103–108. 2

[CMFL15] CRASSIN C., MCGUIRE M., FATAHALIAN K., LEFOHN A.:
Aggregate g-buffer anti-aliasing. In Proceedings of the 19th Symposium

on Interactive 3D Graphics and Games (2015), pp. 109–119. 2

[CML11] CHAJDAS M. G., MCGUIRE M., LUEBKE D. P.: Subpixel re-
construction antialiasing for deferred shading. In SI3D (2011), Citeseer,
pp. 15–22. 2

[JESG12] JIMENEZ J., ECHEVARRIA J. I., SOUSA T., GUTIERREZ D.:
Smaa: enhanced subpixel morphological antialiasing. In Computer

Graphics Forum (2012), vol. 31, Wiley Online Library, pp. 355–364. 2

[LD12] LIKTOR G., DACHSBACHER C.: Decoupled deferred shading for
hardware rasterization. In Proceedings of the ACM SIGGRAPH Symp.

on Interactive 3D Graphics and Games (2012), ACM, pp. 143–150. 2

[LHA∗09] LEFOHN A., HOUSTON M., ANDERSSON J., ASSARSSON

U., EVERITT C., FATAHALIAN K., FOLEY T., HENSLEY J., LALONDE

P., LUEBKE D.: Beyond programmable shading (parts i and ii). In ACM

SIGGRAPH 2009 Courses (2009), ACM, p. 7. 1

[Lot09] LOTTES T.: Fxaa. White paper, Nvidia, Febuary (2009). 2

[MSG∗18] MARRS A., SPJUT J., GRUEN H., SATHE R., MCGUIRE M.:
Adaptive temporal antialiasing. In Proceedings of the Conference on

High-Performance Graphics (2018), ACM, p. 1. 2

[PMH02] PETERSON J., MULLIS R., HUNTER G.: Multi-sample
method and system for rendering antialiased images, Oct. 3 2002. US
Patent App. 09/823,935. 1

[Res09] RESHETOV A.: Morphological antialiasing. In Proceedings

of the Conference on High Performance Graphics 2009 (2009), ACM,
pp. 109–116. 2

[SD15] SCHIED C., DACHSBACHER C.: Deferred attribute interpolation
for memory-efficient deferred shading. In Proceedings of the 7th Con-

ference on High-Performance Graphics (2015), pp. 43–49. 2

[ST90] SAITO T., TAKAHASHI T.: Comprehensible rendering of 3-d
shapes. In ACM SIGGRAPH Computer Graphics (1990), vol. 24, ACM,
pp. 197–206. 1

c© 2020 The Author(s)

Eurographics Proceedings c© 2020 The Eurographics Association.

24

