EUROGRAPHICS 2019/ P. Cignoni and E. Miguel

Short Paper

Planar Abstraction and Inverse Rendering
of 3D Indoor Environment

Young Min Kim'? Sangwoo Ryu3 and Ig-Jae Kim'

Korea Institute of Science and Technology (KIST), Korea
2Seoul National University, Korea 3POSTECH, Korea

Abstract

A large-scale scanned 3D environment suffers from complex occlusions and misalignment errors. The reconstruction contains
holes in geometry and ghosting in texture. These are easily noticed and cannot be used in visually compelling VR content without
further processing. On the other hand, the well-known Manhattan World priors successfully recreate relatively simple or clean
structures. In this paper, we would like to push the limit of planar representation in indoor environments. We use planes not only
to represent the environment geometrically but also to solve an inverse rendering problem considering texture and light. The
complex process of shape inference and intrinsic imaging is greatly simplified with the help of detected planes and yet produces
a realistic 3D indoor environment. The produced content can effectively represent the spatial arrangements for various AR/VR
applications and can be readily combined with virtual objects possessing plausible lighting and texture.

CCS Concepts

eComputing methodologies — Texturing; Mixed / augmented reality; Reflectance modeling;

1. Problem and Assumptions

The input to our system is a RGB-D sequence capturing the indoor
environment and a reconstructed mesh using the volumetric fu-
sion method [DNZ*17, DCS*17]. The model is processed in three
steps: (1) finding the geometric representation with planar abstrac-
tion (Section 2), (2) estimating texture (Section 3), and (3) setting
the light parameters (Section 4). The final output is the 3D con-
tent of the indoor environment, which is greatly simplified from
the original sensor sequence or initial mesh. The lightweight mesh
is visually more attractive with clear texture and filled holes. In ad-
dition, we obtain the indirect light field as well as direct lighting.
In short, the pipeline produces the necessary information on geom-
etry, texture, and lighting with the help of the planar assumption,
which can be readily rendered or utilized for a variety of indoor
visualization, navigation, and mixed-reality applications.

2. Geometry estimation

The input to the system is a sequence of color-depth frames and
their calibration information. We also have a 3D mesh built by vol-
umetric reconstruction of the registered depth measurements. In-
stead of using the original depth measurements, which tends to be
noisy, we generate the depth frames by reading the OpenGL depth
buffer when the reconstructed mesh is rendered with the calibra-
tion parameters. From the rendered depth frames, we adapt the fast
plane detection method suggested by [FTK14]. By detecting the
planes in individual frames instead of 3D mesh, we not only be-

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

DOI: 10.2312/egs.20191020

— T
L | |
] 1 ——
i | = -1 — - !
[) [|
- | e -1 | - |
Projected walls Some walls are merged A closed loop is created
Original reconstruction Detected planes Completed room structure

Figure 1: Room structure estimation.

come robust against the large-scale distortion of planes that can
occur with the long-term accumulation but also effectively incor-
porate the visibility information. The detected planes are then pro-
jected back to the reconstructed mesh, and the planes with sufficient
overlap are merged into the same plane (Figure 1).

The initial detected planes do not form a coherent structure.
While previous works detect corners and edges to generate compact
planar representation for visualization [HDGN17, MMBM15], we
found that the choices of connection between neighboring planes
are usually ad hoc, and often result in wrong configurations. The

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://doi.org/10.2312/egs.20191020

82 Y. M. Kim, S. Ryu & I.-J. Kim / Planar Abstraction and Inverse Rendering of 3D Indoor Environment

main reason is that the observed data is distorted and occluded,
missing necessary connectivity information.

We sequentially first detect ceiling and floor, followed by the
loop of the walls to define the room structure. The remaining walls
are conservatively connected when the intersection is observed.
The ceilings and floors are converted into 3D mesh with the help of
apolygon triangulation library (https://github.com/mapbox/earcut),
and the surrounding vertical rectangular walls are represented with
two triangles. Among the remaining planes, the ones that can be
fitted into rectangles are also represented with two triangles. The
other remaining planes are meshed using quad-tree structure on
the plane (Figure 1, bottom right). The overall size of the mesh is
greatly reduced because 3D reconstruction from volumetric fusion
of sensors is usually based on a marching-cube algorithm [LC87],
which creates the triangles within the resolution of the voxels (Fig-
ure 1, bottom left and bottom middle).

3. Color Estimation
3.1. Color-transfer optimization

The planar abstraction extracted in the previous section is further
exploited to improve registration and create high-resolution tex-
ture. The texture can be generated by combining the projection of
multiple frames onto a plane using the known calibration param-
eters. However, the corresponding pixels in different frames are
not the same color, even on Lambertian surfaces, because of auto-
exposure or white balancing. We compensate for the different ex-
posures using geometric correspondence and the method suggested
by [ZCC16]. We find corresponding pixels on images on sampled
vertices py on the initial reconstructed mesh. We solve the follow-
ing optimization problem:
. 2

t’_%);(nam) Ii(pe))” (1)
where #; is per-image exposure, C(py) is the vertex radiance, and
I;(py) is the gamma-corrected (y = 2.2) pixel value of a vertex py
in the image i. The equalized high-dynamic-range mesh is created
with the vertex color to be the weighted median of the equalized
colors of the corresponding pixels.

The high-dynamic range mesh can then be used to locate the
direct diffuse lights. To detect lights, we threshold by the vertex
radiance, and detect the connected components. The center of mass
of the connected mesh are chosen to be a direct light source.

3.2. Per-plane texture generation
3.2.1. Per-plane registration

Similar to the mesh colors, the texture of the indoor structure for
the simplified planes can be generated using the projection of RGB
frames on the planes. With the known registration and 3D location
of planes, this could be solved using simple homography. However,
the initial geometry would be clearly distorted from a perfect plane
and, as a consequence, the initial registration to the distorted geom-
etry should have been erroneous.

We solve for the local optimum of the camera-to-world registra-
tion T = {7;} of each frame given the initial registration T°. Indi-
vidual frames in which the pixels correspond to a specific plane are

(a) Initial texture (b) Clustered background pixels

(c) Inpainted background

(d) Foreground blended

Figure 2: Per-plane texture generation step in Section 3.2.2.

further mapped to the plane with 77, which transforms the world
coordinate system into the xy plane with the normal in the z di-
rection. Then for a point in a camera frame p““"*"“, the point is
mapped to a plane by pP'¥¢ = TP . T; . pc@™" We first refine the
registration of the individual frames by jointly solving for the pla-
narity of geometry, in addition to the sparse, and dense constraints
on the plane coordinate system:

E(T) = Eg(T) + AsEs(T) +AgE4(T) 2)

The weights As and A, are set such that Eg(T°) = AEs(T°) =
AgE4(T?). The first term E,(T) represents the geometric term to
hold the measurements close to the detected plane:

It 2
Eg(T)=Y) ol -esl", 3)
ik

where e3 represents the unit-vector in the z-direction, and the term
. plane

is minimized for all corresponding points (indexed by k) Pig for
projecting all frames i. The second term Es(T) optimizes for the
locations of sparse image feature correspondences (pfj]l;me, pil]f)

for every pair of (i, j) frames:
1 1 2
E(T) = LY @0) (e + el)
ij ok

Furthermore, the third term E;(T) is optimized over the dense pho-
tometric consistency of individual pixel values C(p”'®") in the
generated texture. If Ii(pfj ,l(a"e) represents the pixel intensity of a
point in the color-corrected and warped image of frame i, it can be
written as
E((T) = LY [IC(p2") — 1i(p?m) . s)
k

i

We use the Ceres Solver (http://ceres-solver.org/) to optimize the
registration. For the dense term and geometric term, we use only
one point for every five 5 pixels in both x and y directions to reduce
the problem size.

3.2.2. Foreground-background optimization

Even though we resort to simple planar geometry, we can still cre-
ate the illusion of a realistic environment by rendering the model

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Y. M. Kim, S. Ryu & I.-J. Kim / Planar Abstraction and Inverse Rendering of 3D Indoor Environment 83

with high-resolution texture. For each pixel on the texture plane,
multiple measurements are combined using a weighted median
considering both geometry and color. However, combining mea-
surements is not enough to create high-resolution texture. There are
still possible misalignments due to geometric errors or motion blur,
and, more importantly, unknown texture of the generated geometry
extrapolated using room-structure priors.

We take a two-step approach for background and foreground.
The underlying assumption is that each individual plane has a dom-
inant color (base texture or background color) that can be smoothly
interpolated and filled. On the other hand, there are high-frequency
details on top of the base texture, which are assigned as foreground.
The texture refinement steps for the foreground and background re-
gions are described in Figure 2.

An example of the combined initial texture is shown in Figure 2a.
We first cluster the RGB values of the pixels in the generated tex-
ture avoiding the edge region as shown in Figure 2b. We use the
selected pixels to create the inpainted background (Figure 2c). The
inpainted background region is merged with the initial texture to
create a full texture without missing values (Figure 2d). Our ap-
proach with background assumption works with most flat walls in
the real world. More importantly, the background regions are rep-
resented by a simple reflectance model and can be used to estimate
the necessary light parameters.

4. Light parameter estimation

We solve for the light parameters using the homogeneous back-
ground region under the assumption of planar geometry. We are
able to create full 3D content that contains not only geometry but
also reflectance and light parameters representing both direct and
indirect lighting. With directional light sources, the light varies sig-
nificantly for the different regions within the space and our method
can capture these effects. This is in contrast to the light parame-
ter estimation of previous methods which either focused on small
regions to place virtual objects, or considered only directions to
represent an environment map. With fuller components that repre-
sent the environment, we can seamlessly augment virtual objects,
create realistic shadows, and change texture or lights.

Let us first begin with the famous radiance equation [CWH93]:

RV —=x)= Sf(x =V = xG(V,x)R(x = V)dA. (6)
xe

The radiosity of a point V to another point x" is the sum of all ra-
diance received from other points x multiplied by the BRDF f and
the visibility G. We further assume that the detected planes are rep-
resented with Lambertian homogeneous reflectance f(V) = p in
the background region, or in other words, where no high-frequency
texture detail is observed. Then for a non-emitting vertex p; the
above equation can be re-written for a discretized mesh as

C(pi) = pZG(PIij)R(Lj — Px)
J
= p{x(pr) +ZD(L/' =P} ()
J

In other words, the pixel intensity C(py) is a combination of the
direct lighting ¥ ; D(L; — p) and the indirect lighting x(py)-

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

The locations of the direct light are detected as the bright regions
when the vertex colors are equalized as described in Section 3.1.
For each detected location, we placed point-light sources with axi-
ally symmetric distribution with the vertical axis of symmetry rep-
resented by a 32-bin discretization of the angle 6. The occlusions
are represented by a binary visibility function G(pg,L;).

To summarize, the direct lighting can be written as:

1
D(Lj — pr) = G(px,Lj) I, -Ar;(8L,) - cosOp, - 2 (8)

We only need to solve for the light intensity, which is formulated
as the combination of RGB factor I1,; and angular bins Az,(8y;).
Other terms (G(px,L;), 0L;, Op,, and r) are geometric form factors
and can be calculated with the known information.

The physically correct way to simulate such lighting is to run ray
tracing multiple times with the correct geometry and material, until
reaching convergence. When converged, the field of indirect light
can be represented by the position and the direction at any point
within the volume. This involves a prohibitive amount of calcula-
tion and memory. Instead, we assign an unknown indirect lighting
at each vertex x(py), and add smoothness criteria for neighboring
vertices. In other words, we minimize the following optimization
problem:

Y lIC(pi) —p - {Y., D(L; — pi) +x(pi) HI
A A

J
+he Y,

(kk,kz)EN

x(pg,) —x(pi) 1> (9)

The first term matches the color at the vertex with the light and re-
flectance, and the second term enforces smoothness between neigh-
boring indirect lighting. For implementation, we regularly use sam-
ple vertices on the plane region clustered as background.

5. Results

The pipeline has been implemented in a desktop machine with
Intel Core i7 3.6GHz CPU with 16 GB memory. The render-
ing of virtual scenes is implemented using the Unreal engine
(www.unrealengine.com) with point-light sources. We tested the
pipeline with sequences available from [HDGN17], the Bundle-
Fusion [DNZ*17], and the ScanNet [DCS*17] data set. The intial
mesh is built with the VoxelHashing approach [NZIS13]. The de-
tails of the dataset used is available in Table 1. After about 2-3
hours of processing, the complete and light weight representation
is acquired with only 1-6% of face elements.

Figure 3 shows the qualitative comparison between the original
volumetric reconstruction and the light-weight reconstruction. With
a fraction of elements, we can still convey the overall shape of the
environment. Samples of reduced triangle faces are highlighted in
the bottom rows of Figure 3. More importantly, our pipeline greatly
reduces the ghosting artifacts near the depth boundaries (shown in
yellow) and fill unnecessary holes (shown in green). Most of de-
tails on texture is crisp, and the color stays equalized regardless
of per-frame white-balancing. Our representation erases non-planar
objects from the original reconstruction and fill them with the back-
ground color.

84 Y. M. Kim, S. Ryu & 1.-J. Kim / Planar Abstraction and Inverse Rendering of 3D Indoor Environment

3dlite BundleFusion ScanNet
scenes apt office0 office3 0567_01
of frames 2865 6159 3820 2066
faces (before) | 3,291,072 | 926,414 | 3,045,096 | 435,126
of planes 30 23 29 15
faces (after) 21,092 9,490 33,370 11,054
reduction 6.4% 1.0% 1.1% 2.5%

Table 1: The characteristics of indoor data sets and the representa-
tion processed by our pipeline.

Office 3

Apt Office 0

0567_01

VoxelHashing

Ours

Ours, triangulation

Figure 3: Comparison of visualization using VoxelHash-
ing [NZIS13] (top rows) with our representation (middle and
bottom rows). The volumetric reconstruction suffers from ghosting
(yellow) or holes (green), and our approach alleviates the artifacts.
In the meanwhile, our approach erases non-planar objects (blue)
and fill it with nearby background colors. Our representation uses
much smaller number of triangles (bottom rows), but exhibit crisp
texture for detected foreground.

With the help of planar proxy, the visualization of different view-
points stays convincing. We compare the original input frames (first
column) with renderings of textured mesh in Figure 4. The simple
rendering of transformed initial mesh reveals the limitation of im-
precise texture (second column). Even with re-texturing of equal-
ized frames with weighted median can alleviate such artifacts (third
column). We then find the background colors of planes and use the
light location to solve simplified inverse rendering problem. From
the inferred values and using the simplified planar geometry, we
can create a virtual scene of an empty room (forth column). The
lighting and texture components might not be exact, but we can
still render similar colors of planes. The virtual scene can be freely
altered for VR applications (fifth column).

6. Conclusion

We presented a holistic pipeline to represent captured indoor envi-
ronment into a 3D content with full geometry, texture, and light-
ing information. We first focus on completing the room structure
based on plane detection. Individual planes are further refined de-
tecting dominant colors for background. The detected backgrounds

Rendering in VR,
augmented

Rendering with
enhanced texture

Renderingin VR,
empty

Rendering with
original mesh

Original frame

Figure 4: Samples of input frames and the rendering at the same
view for apt and office0 data set.

are used to fill unobserved region and extract components for in-
verse rendering, while the remaining foreground is used to refine
the texture. The generated representation can be used to visualize
and navigate the captured environment.

Acknowledgements

This work was partly supported by the ICT R&D program of
MSIP/ITP. [2017-0-00162, Development of Human-care Robot
Technology for Aging Society] and KIST institutional program
[Project No. 2E29450]

References

[CWH93] COHEN M. F., WALLACE J., HANRAHAN P.: Radiosity and
Realistic Image Synthesis. Academic Press Professional, Inc., San Diego,
CA, USA, 1993. 3

[DCS*17] DAl A., CHANG A. X., SAVWVA M., HALBER M.,
FUNKHOUSER T., NIESSNER M.: Scannet: Richly-annotated 3D re-
constructions of indoor scenes. In Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE (2017). 1,3

[DNZ*17] DAI A., NIESSNER M., ZOLLOFER M., IzADI S.,
THEOBALT C.: Bundlefusion: Real-time globally consistent 3D recon-
struction using on-the-fly surface re-integration. ACM Transactions on
Graphics 2017 (TOG) (2017). 1,3

[FTK14] FENG C., TAGUCHI Y., KAMAT V.: Fast plane extraction in or-
ganized point clouds using agglomerative hierarchical clustering. In Pro-
ceedings of IEEE International Conference on Robotics and Automation
(2014). 1

[HDGN17] HUANG]J., DAT A., GUIBAS L., NIESSNER M.: 3DLite: To-
wards commodity 3D scanning for content creation. ACM Transactions
on Graphics 2017 (TOG) (2017). 1,3

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A high res-
olution 3D surface construction algorithm. In Proceedings of the 14th
Annual Conference on Computer Graphics and Interactive Techniques
(1987), SIGGRAPH 87, pp. 163-169. 2

[MMBMI15] MONSZPART A., MELLADO N., BROSTOW G. J., MITRA
N. J.: Rapter: Rebuilding man-made scenes with regular arrangements
of planes. ACM Trans. Graph. 34, 4 (July 2015), 103:1-103:12. 1

[NZIS13] NIESSNER M., ZOLLHOFER M., 1ZADI S., STAMMINGER
M.: Real-time 3D reconstruction at scale using voxel hashing. ACM
Transactions on Graphics (TOG) (2013). 3, 4

[ZCC16] ZHANG E., COHEN M. F., CURLESS B.: Emptying, refurnish-
ing, and relighting indoor spaces. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH Asia 2016) 35, 6 (2016). 2

© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

——

