Pseudo Codes

Algorithm 1: Anime Face Generation

Given the SFN model M_F , the anime face generative model M_G , and a quality threshold t.

Input: the gender attribute **g** (male or female)

1. Initialize the iteration step I=0;

Repeat

- 2. Generate a face image X_g using the model M_G on the condition g;
- 3. Estimate the quality q of X_g with the model M_F ;
- 4. Update *I=I+1*;

Until: *q*>*t* or *I*>10

Output: the generated image X_g

Algorithm 2: Learning Process

Given three DNN backbones M_R , M_D , and M_S , and anime face images $X = \{X_{real}\}$ with *incomplete* labels $y = \{y^g, y^s, y^q\}$ respectively corresponding to gender, style, and quality.

Step 1: Active Label Completion

- 1.1 Train three classifiers on each backbone with incomplete labels using Eq. (1);
- 1.2 Predict the missing labels of y^g and y^s by ensembling three classifiers;
- 1.3 Fill the original label set y with the prediction and form a complete label set y' except for unknown y^q ;

Step 2: Anime GAN

- 2.1 Train an SFN model M_F with y' using Eq. (1);
- 2.2 Extract the last fully connected layer as style features s;
- 2.3 Train GAN models with $\{X_{real}, s, g\}$ using Eq. (2);
- 2.4 Generate fake images X_{fake} using the *generative* model M_G ;

Step 3: SFN Finetuning

- 3.1 Set the quality $y^q=1$ of images X_{real} ;
- 3.2 Manually annotate images X_{fake} with different quality $y^q = \{0, 0.5, 1\}$;
- 3.3 Finetune M_F with both X_{fake} and X_{real} of the quality label y^q using Eq. (1).

Output: the SFN model $M_{\it F}$ and the anime face generative model $M_{\it G}$