EUROGRAPHICS 2019/ P. Cignoni and E. Miguel

Short Paper

Integrating server-based simulations into web-based
geo-applications

Pascal Bormann, Ralf Gutbell, Johannes Sebastian Mueller-Roemer

TU Darmstadt & Fraunhofer IGD, Germany

Abstract

In this work, we present a novel approach for combining fluid simulations running on a GPU server with terrain rendered
by a web-based 3D GIS system. We introduce a hybrid rendering approach, combining server-side and client-side rendering,
to interactively display the results of a shallow water simulation on client devices using web technology. To display water and
terrain in unison, we utilize image merging based on depth values. We extend it to deal with numerical and compression artifacts
as well as Level-of-detail rendering and use Depth Image Based Rendering to counteract network latency.

1. Introduction

Nowadays, the simulation of flood scenarios becomes increasingly
important due to the rising number of weather phenomena, in par-
ticular intense rainfall. To aid in high water analysis and the cre-
ation of strategies for preemptive actions, these simulations should
run interactively and be visualized in a 3D Geographic Informa-
tion System (GIS) rendering terrain data. Interactive fluid simula-
tions are possible using GPGPU (general-purpose computing on
the GPU) approaches. This conflicts with the combined visualiza-
tion of the simulation and terrain data, as GIS systems are more
and more web-based and lightweight. While there has been valu-
able research in both areas - fluid simulation [BSA12] as well as
geodata visualization [KG15] - to the best of our knowledge the
two areas have seen no significant overlap. To alleviate this prob-
lem, we introduce an approach for combining fluid simulations and
3D GIS systems into a single web-application based on the smallest
denominator of visual applications: pixels.

Our contributions are as follows: We present a novel hybrid-
rendering approach for the combination of interactive server-
based simulations with web-based rendering applications. This is
achieved through a combination of server-side and client-side ren-
dering. We demonstrate a showcase application that utilizes hybrid
rendering to interactively display results of a GPU-based fluid sim-
ulation within a web-based 3D visualization of static terrain data.
Our approach allows access to sophisticated simulations on ordi-
nary client devices, utilizing the benefits of server-side rendering,
while providing full interactivity through usage of Depth Image
Based Rendering (DIBR) and perspectively correct integration of
simulation data into the client visualization. We overcome a series
of technical hurdles in this process:

e Correct image compositing based on depth values while dealing
with numerical inaccuracies.

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

DOI: 10.2312/egs.20191012

e Mixing Level-of-detail-based (LOD) rendering of terrain with a
rendering of simulated data with full detail.

e Dynamic scaling of projected pixels to fill gaps between neigh-
boring pixels after DIBR.

In Section 2, we cover the architecture of the system and intro-
duce client and server implementations. Section 3 introduces the
necessary algorithms for our image merging approach. Our results
are evaluated in Section 4. Finally, Section 5 gives a conclusion and
an outlook on future work.

2. Approach

Client o7 nemerk Server
GeoTIFF + terrain
geometry

Q@“ — Cesium)S oo Geodata storage
$
& (o)
g — three js ; ;
= J ShallowWaterSimulation
=) | Cosamen]
Rixel processing e Simulation renderer

Figure 1: Overview of the system architecture

Our system is built upon a typical server-client architecture as
depicted in Fig. 1. There are two server instances running in the
cloud, a GPU instance running the shallow water simulation and
a database that hosts GeoTIFF [RRG*00] files and correspond-
ing terrain meshes. On the client side, two separate rendering sys-
tems are running in the same web-application: A globe-rendering-
component built upon CesiumJS [CES] and a three.js-based [THR]
rendering component responsible for rendering the data received
from the simulation server. The workflow is as follows:

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://doi.org/10.2312/egs.20191012

50 Pascal Bormann, Ralf Gutbell, Johannes Sebastian Mueller-Roemer / Integrating server-based simulations into web-based geo-applications

1. The client application connects to the simulation server.

2. The client application loads a GeoTIFF file from the database
and sends a message to the server instructing it to load the same
GeoTIFF file.

3. The client application sends simulation-specific parameters,
such as water height and the water starting area, to the simu-
lation server.

4. The server starts running the simulation and periodically sends
new data to the client, while simultaneously receiving camera
matrices from the client.

5. The simulation data is continuously integrated into the client
visualization using our image merging algorithm.

The next two sections first cover the server and client implementa-
tions before the image merging algorithm is explained in Section 3.

2.1. Simulation engine and data transmission

For the simulation server, a GPU-based shallow water solver
was implemented based on the work introduced in [BSA12] and
[VPM14] . We use a second order in time and space discretization
on a regular grid, using an explicit, adaptive time step integration
method. While the state vector and all intermediates are allocated
at the full size of the domain, only a small percentage of the do-
main contains water at any point in time. As an optimization, only
16 x 16 subdomains that contain water, or are adjacent to cells that
contain water, are considered in the simulation kernels. Combined
with the fast, GPU-parallelized solver, this allows us to achieve
simulation rates well beyond real time suitable for prediction.

While the shallow water simulation is implemented in CUDA
[NVI18], the server-side hybrid rendering component is imple-
mented in OpenGL. However, CUDA offers OpenGL interoperabil-
ity functions, therefore the results of the simulation can be used for
rendering without copying data.

For data transmission, we build on the rich pixels (rixels) ap-
proach of [ADSF15] and add several enhancements:

o Instead of transmitting positions (96 bit per rixel), we only trans-
mit post-projection z (32bit per rixel) and a visibility mask (1 bit
per viewport pixel). Besides reducing message size, renderer fill-
rate requirements are reduced, as depth testing is always required
but the additional render target can be omitted.

e Instead of transmitting colors after color mapping (24 bit per
rixel), we transmit 16bit fixed point values along with a 32bit
floating point minimum and maximum for the entire domain. In
addition to further reducing message size, this approach allows
for zero latency client-side changes to color mapping.

e Mask computation, stream compaction (removal of “empty”
viewport pixels), and minimum/maximum computation are per-
formed on the GPU to reduce PCle bandwidth and latency to a
minimum using CUDA and Thrust [BH15]. The CPU only adds
a message ID and WebSocket framing.

A detailed description and analysis of the simulation server and
rixel enhancements are out of the scope of this paper.

2.2. Client rendering implementation

One of the main challenges with our approach is the correct vi-
sual integration of two different render-sources—a terrain model

rendered by CesiumJS and a water area rendered remotely by the
server—into a coherent and correct final image. The combina-
tion of both render-sources is motivated by the depth-merging ap-
proach presented in [GPCK16] and is extended to support a con-
stant stream of portrayals. In its most basic form, our algorithm
utilizes depth values in image space to merge the renderings of ter-
rain and water body. Given two color/depth image pairs Z, D and
T,,D, taken from the same vantage point, a merged image satis-
fying all occlusions can be computed using regular depth-testing:

<D2(X,y

_ Il (.X,y)
Iﬁnal(xv)’) - { :Dl (x,y) ZDZ(X,y

)

T(x,y)) W

This so called “sort-last” method was historically used for par-
allelizing graphical computation [Mol91, BSO1], we use the ap-
proach to mix distributed rendering setups. Implementation-wise,
this assumes that both image pairs were generated using the same
view and projection matrices, so that pixels with the same depth
value coincide in world space. To guarantee that the merging pro-
cess yields correct images, it is imperative that the CesiumJS client
renderer and the simulation server use an identical terrain model.
We guarantee this by generating terrain models directly from the
GeoTIFF files upfront. However, some challenges remain that are
explained in Section 3.3.

Instead of directly merging each newly received frame on the
client, we use a DIBR algorithm to enable interactive viewing of
the simulated water body. As mentioned in Section 2.1, the simula-
tion data for each frame is sent as a set of rixels, with empty rixels
being discarded, which can be reconstructed into D, the depth im-
age, as well as an additional image containing simulation-specific
values, such as velocity or water height. For each pixel, its posi-
tion in normalized device coordinates is reconstructed by combin-
ing its image-space position and its depth value in image space and
then applying an inverse viewport transformation as illustrated in
Eq. (2).

2% ((x+0.5) /screenwidth) — 1
Vnpc, = |2 ((y+0.5)/screenheight) — 1 2)
2xD(x,y)—1

The converted positions are then uploaded to the GPU as a point-
cloud geometry. Inside the vertex shader, the points are reprojected
using the following DIBR equation, adapted from [MB16]:

- s R
Vi =Mp, « My, « My~ «Mp ~ *Vypc, 3)

The simulation values are uploaded as vertex attributes, which are
colored using a color lookup table. The resulting image of this
DIBR process is then merged with the terrain image rendered by
CesiumJS into the final client-side visualization (see Fig. 2).

3. Image merging

The introduction of DIBR complicates the trivial depth merging
process as it was introduced in Section 2.2. The usage of DIBR
in our implementation can be seen as a means for geometry com-
pression: Geometry is compressed on the server by the process
of rendering and sent to the client as a color/depth image pair. It

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Pascal Bormann, Ralf Gutbell, Johannes Sebastian Mueller-Roemer / Integrating server-based simulations into web-based geo-applications 51

Figure 2: Water body integrated into terrain rendering

is then decompressed to yield geometry again, which can be ren-
dered interactively. For a given vertex v on the server, the following
equation—an extension to Eq. (3)—defines the chain of transfor-
mations applied to ¥ resulting in a position in normalized device
coordinates on the client device:

Vr = Mp, * My, >c<M‘Z1 *MEI *VI_IOVZOMPS*MVS*_; “)

client-side DIBR server-side rendering

The application of this equation introduces several sources of nu-
merical errors, which can lead to incorrect depth merging:

e The viewport transformation vt quantizes continuous normalized
device coordinates into discrete pixel coordinates, applying vt ™!
thus can yield incorrect positions.

e Depth precision is limited and non-uniform, leading to increas-
ing quantization errors as camera distance increases.

e Calculation of inverse matrices as well as long multiplication
chains exhibit numerical instabilities.

Apart from these numerical errors, depth merging may also fail due
to the way terrain is rendered in 3D web-GIS applications. To en-
able rendering of large scale terrain in realtime, it is often rendered
with Level-of-detail (LOD), which simplifies the terrain geometry
the further away from the camera it is displayed. Our water simula-
tion does not employ LOD but instead always operates on the most
detailed terrain geometry level. This leads to a mismatch between
server and client topologies and consequently to incorrect depth
merging (see Fig. 5). The next three sections discuss our contribu-
tions to solve these depth merging errors.

3.1. Dealing with viewport quantization

Figure 3: Holes due to DIBR (left) fixed with adaptive point scaling
(right)

Viewport quantization introduces a maximum error of half the
pixel size in world space. This error only becomes visible when
applying DIBR to magnify the source geometry. Given the DIBR
algorithm of Eq. (3), magnifying the source geometry introduces

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

information gaps in the visualization [MB16]. As a result of these
gaps, the viewport quantization errors become less noticeable due
to a lack of visual cohesion in the geometry (Fig. 3, left). Scaling
points dynamically based on the ratio between source viewspace
distance and reprojected viewspace distance fixes most holes while
also covering up the quantization errors (Fig. 3, right).

3.2. Dealing with depth imprecision

Depth buffer precision is a common problem in computer graphics,
which is particularly relevant when rendering scenes covering very
large areas, like in our use case. Adjusting of the clipping planes
is not effective as the scenes in 3D GIS applications easily span
dozens of kilometers. On these large scales, having less than 32 bit
of precision in the depth buffer results in noticeable artifacts. Stan-
dard techniques for precision improvement, such as inverting the Z-
values or using a logarithmic depth buffer, cannot be realized in our
setting, both due to missing APIs in WebGL [Mar11] and because
the DIBR Equation (3) requires linear depth values. Instead, as a
general optimization to reduce numerical errors, we utilize the two-
step vertex transform approach by Upchurch and Desbrun [UD12]
when applying Eq. (3). We found that, given 32bit depth values,
the visualizations in our scenario work decently well, especially in
conjunction with the depth probing algorithm of Section 3.3.

3.3. Dealing with terrain LOD

Figure 4: No depth test (left, falsely visible regions in red), depth
test using Eq. (1) (middle, falsely clipped regions in red), depth test
using depth probing (right)

Correctly integrating water and terrain is crucial for our use case,
as occlusions enable correct localization of the water body within
the terrain (compare Fig. 4, left and middle). In the presence of
LOD, there is no trivially correct approach for this integration.
When a coarse-grained LOD terrain segment occludes the fine-
grained simulation geometry (like in Fig. 5, bottom left), clipping
the simulated geometry is logically correct but does not yield sat-
isfactory visual results. Users can get confused by the water body
suddenly disappearing when zooming out. As such, any approach
that fixes this issue will trade correctness for visual quality and will
be prone to false positives—showing water where it should actu-
ally be occluded. Switching off LOD altogether is not feasible due
to performance considerations. For the use-case presented herein,
we found the following depth probing approach to work sufficiently
well to solve incorrect, LOD-induced occlusion.

Let Z;,D; be the terrain image pair and Zp,D; the water im-
age pair. For each pixel (x,y), if Dy(x,y) < Di(x,y), let Zr(x,y)
be visible. Otherwise, let z,; be the viewspace distance of D;(x,y).

52 Pascal Bormann, Ralf Gutbell, Johannes Sebastian Mueller-Roemer / Integrating server-based simulations into web-based geo-applications

Set Ty (x,y) visible only if (zv, —zy,) > T, where T is an empir-
ical threshold value set to 10 units in our implementation. Fig. 5
(right) illustrates this algorithm visually, Fig. 4 shows the result of
the algorithm as compared to the trivial depth merging approach.

Figure 5: Faulty depth merging due to terrain LOD (left, terrain
in black, water in blue, wrong occlusion in red) solved with depth
probing (right)

4. Results

Figure 6: Overview of the combined application. From left to right:
Selection of water origin; water spread after some time; integration
of water body into terrain

Fig. 6 gives an overview of an exemplary use of our system. The
combined visualization of terrain data and simulated water makes
the simulation results easy to understand and interact with. Through
the usage of DIBR, interactive viewing of the water spread within
the browser is possible. A demonstration of the system is shown in
the supplementary video. A limiting factor of our system is the size
of the transmitted rixels. The larger the visible area of the water
body, the more rixels have to be transmitted, which reduces the
perceived update rate of the simulation on the client depending on
the network throughput. On less capable client devices, we found
that the processing of the rixel data — decoding and uploading to
the GPU — can also reduce the interactivity of the system.

5. Conclusion and future work

We presented an architecture and reference implementation
which combines a web-based 3D-GIS application with a server-
based fluid simulation. By utilizing the rich-pixels approach of
[ADSF15], combining the concepts of [GPCK16] and [Mol91] and
applying a DIBR algorithm, the simulation data can be displayed
interactively within the browser. We illustrated problems with the
depth merging process that is required to combine images gener-
ated through client-side and server-side rendering and proposed
different mechanisms to mitigate these problems. We believe the
approach illustrated in this paper is not limited to fluid simulations
and extensible to other computational expensive domains. In the
future, we aim to integrate different types of simulations using the
proposed architecture to enable easy access to sophisticated simula-
tions from within the browser. The limitations of this approach are
those shared by most systems that use a form of server-side render-
ing, namely latency and throughput problems. We aim to analyze

how predicting camera motion in combination with depth buffer
compression can help mitigate the visualization delay introduced
by these issues. Additionally, we want to further reduce the ef-
fects of LOD on the depth merge by utilizing screen-space error
metrics. If the simulation is extended to support fields other than
water height and velocity, the JIT-accelerated streaming queries in-
troduced in [MA16] could be used to efficiently compute derived
fields on the GPU before hybrid rendering.

References

[ADSF15] ALTENHOFEN C., DIETRICH A., STORK A., FELLNER D.:
Rixels: Towards secure interactive 3d graphics in engineering clouds.
The IPSI BgD Transactions on Internet Research 31 (2015). 2, 4

[BH15] BELL N., HOBEROCK J.: Thrust 1.8.1, 2015. URL: https:
//thrust.github.io/.?2

[BSO1] BARTZ D., SILVA C.: Rendering and Visualization in Parallel
Environments. In Eurographics 2001 - Tutorials (2001), Eurographics
Association. doi:10.2312/egt.20011052. 2

[BSA12] BRODTKORB A. R., SETRA M. L., ALTINAKAR M.: Effi-
cient shallow water simulations on GPUs: Implementation, visualiza-
tion, verification, and validation. Computers & Fluids 55 (2012), 1-12.
doi:10.1016/§.compfluid.2011.10.012. 1,2

[CES] Cesium - WebGL Virtual Globe and Map Engine. https://

cesiumjs.org. 1

[GPCK16] GUTBELL R., PANDIKOW L., COORS V., KAMMEYER Y.: A
framework for server side rendering using ogc’s 3d portrayal service. In
Proceedings of the 21st International Conference on Web3D Technology
(2016), ACM, pp. 137-146. 2, 4

[KG15] KRAMER M., GUTBELL R.: A case study on 3d geospatial ap-
plications in the web using state-of-the-art webgl frameworks. In Pro-
ceedings of the 20th International Conference on 3D Web Technology
(2015), ACM, pp. 189-197. 1

[MA16] MUELLER-ROEMER J. S., ALTENHOFEN C.: JIT-compilation
for interactive scientific visualization. In Short Papers Proceedings: 24th
International Conference in Central Europe on Computer Graphics, Vi-
sualization and Computer Vision (2016), WSCG 16, pp. 197-206. 4

[Marll] MARRIN C.: Webgl specification. Khronos WebGL Working
Group (2011). 3

[MB16] MEDER J., BRUDERLIN B.: Fast depth image based rendering
for synthetic frame extrapolation. Journal of Theoretical and Applied
Computer Science 10, 3 (2016), 3-18. 2,3

[Mol91] MOLNAR S.: Combining z-buffer engines for higher-speed ren-
dering. In Proceedings of the Third Eurographics Conference on Ad-
vances in Computer Graphics Hardware (Aire-la-Ville, Switzerland,
Switzerland, 1991), EGGH’88, Eurographics Association, pp. 171-
182. URL: http://dx.doi.org/10.2312/EGGH/EGGH88/
171-182,doi:10.2312/EGGH/EGGH88/171-182. 2,4

[NVI18] NVIDIA CORPORATION: CUDA C Programming Guide. Man-
ual PG-02829-001_v10.0, 2018. URL: https://docs.nvidia.
com/pdf/CUDA_C_Programming_Guide.pdf. 2

[RRG*00] RITTER N., RUTH M., GrIssoM B. B., GALANG G.,
HALLER J., STEPHENSON G., COVINGTON S., NAGY T., MOYERS
J., STICKLEY J., ET AL.: Geotiff format specification geotiff revision
1.0. SPOT Image Corp (2000). 1

[THR] three.js - Javascript 3D library. https://threejs.org/. 1
[UD12] UPCHURCH P., DESBRUN M.: Tightening the precision of per-
spective rendering. Journal of Graphics Tools 16, 1 (2012), 40-56. 3

[VPM14] VACONDIO R., PALU A. D., MIGNOSA P.: GPU-enhanced
finite volume shallow water solver for fast flood simulations. Environ-
mental Modelling & Software 57 (2014), 60-75. doi:10.1016/7.
envsoft.2014.02.003.2

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

https://thrust.github.io/
https://thrust.github.io/
https://doi.org/10.2312/egt.20011052
https://doi.org/10.1016/j.compfluid.2011.10.012
https://cesiumjs.org
https://cesiumjs.org
http://dx.doi.org/10.2312/EGGH/EGGH88/171-182
http://dx.doi.org/10.2312/EGGH/EGGH88/171-182
https://doi.org/10.2312/EGGH/EGGH88/171-182
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://threejs.org/
https://doi.org/10.1016/j.envsoft.2014.02.003
https://doi.org/10.1016/j.envsoft.2014.02.003

