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Abstract
Curvature estimation is very popular in geometry processing for the analysis of local surface variations. Despite the large
number of methods, no quantitative nor qualitative studies have been conducted for a comparative analysis of the different
algorithms on surfaces with small geometric variations, such as chiselled or relief surfaces. In this work we compare eight
curvature estimation methods that are commonly adopted by the computer graphics community on a number of triangle meshes
derived from scans of surfaces with local reliefs.

CCS Concepts
• Computing methodologies → Shape modeling; Shape analysis;

1. Introduction

Surface curvature yields several insights on the local shape ge-
ometry, such as convexity/concavity, unfoldability and reflecting
lines, being consistent with the human perception of a geometric
shape [PT96]. For this reason, many shape processing and analysis
algorithms [Gol05,DC16] ground on surface curvatures. A detailed
introduction of curvatures on surfaces can be found in [Lip69].
Briefly, the curvature of a surface S (at least C2−smooth) in one of
its points P is a numerical estimation of the bending of S in P. Cur-
vatures and their derived entities, such as the mean curvature, the
Gaussian curvature, the Shape Index and the Curvedness [KvD92],
are widely used to describe the local geometric properties.

While the definition of curvatures is not ambiguous for smooth
surfaces, it is not well defined for discrete representations of sur-
faces. Common computational strategies are the evaluation of the
curvatures for a surface that locally approximates the mesh or the
definition of discrete curvature tensors. The literature on curva-
ture estimation is vast and we cannot do justice to it here. For
details, we refer to the comparative studies on methods for es-
timating curvatures on triangle meshes [GG06, MSR07] and the
recent benchmark [VVP∗16]. As a broad classification, we clas-
sify the methods as: fitting methods, based on the fitting of math-
ematical surface primitives (for instance quadratic surfaces like
spheres, or cubic Bézier patches or Hermite RBF fitting) [GI04,
CP03, GG07, GGG08, PV18]; direct discretization methods of the
curvature in a vertex (e.g., in terms of the angle excess or vari-
ations [MPS∗04]) and of the curvature tensor [MDSB03, Tau95,
Rus04, KSNS07, DW05, ZGYL11]; indirect approximations of re-
lated quantities (e.g. second form) [CSM03, CSM06, LBS07].

A limitation of the existing benchmarks for the comparison of

curvature estimators is that the curvatures are evaluated on almost
smooth surfaces and looking at the overall surface without focus-
ing on the feature details. On the contrary, in this paper we focus on
the practical behaviour of the algorithms on local geometric vari-
ations, such as chiselling, incisions, small bumps on the surface,
to assess the capability of different approaches to identify of local
features. Differently from [MSR07] and [VVP∗16], the models we
are considering do not correspond to smooth surfaces and are all
obtained with scans of real objects, thus we do not possess the ex-
act curvature values to compare the estimations obtained. For this
reason, our comparison is mainly visual and quantitative metrics
are provided only for the localization of curvature values on spe-
cific features and the frequency of the outlier values.

2. Experimental settings

We selected seven 3D models that we think are significant when
looking for the characterization of local features and details. Fig-
ure 1 overviews the selected models. To represent these surface
we adopt a triangle mesh, which is a standard-de-facto represen-
tation of models reconstructed from laser scans and for which there
is a rich variety of algorithms. All surfaces are sampled with 1M
vertices, with the exception of M1 and M7, which have ∼ 550K
vertices. Figure 1 visually represents the vertex density for each
model; the red regions contain 20000 vertices, approximately. The
local variations in these surfaces come in various shapes and de-
grees, ranging from sharp variations (facial traits of M1 and M4) to
smooth ones (hairs of M3 or scales of M2), from small ones (like
the hair of M1, M5 and M6) to bigger ones (scales of M2), from
frequently repeated (circlets of M5 and M6) to more localized ones
(door decorations of M7).
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Figure 1: Our test-beds. Models 5 & 6 come from the GRAVITATE use case [EU 18]. The red areas contain 20000, approximately.

We selected eight representatives of the various curvature esti-
mator strategies. Far from being exhaustive, our selection falls on
implementations that are freely available and, in our knowledge, of
common use in the geometry processing community. Namely, we
are considering:

• the Algebraic Point Set Surface (AP) fitting method [GG07,
GGG08] as implemented in [CCC∗08];
• the curvature discretization based on the cotan discretization of

the Laplace-Beltrami operator (MA) [MDSB03] following the
implementation provided in [CCC∗08];
• the pseudo-inverse quadratic fitting method (QF) in [CCC∗08];
• the normal cycles approach (NC) [CSM03] as in [Pey];
• the curvature estimation based on an adaptive re-weighting of

the vertices in the neighborhood proposed in [KSNS07] (KA)
(authors’ implementation);
• the discrete estimation of the second fundamental form proposed

in [Rus04] (TR) (author’s implementation);
• the normal curvature estimation based on the Euler formula pro-

posed in [DW05] (DO) (authors’ implementation);
• the least-squares curvature tensor approximation and iterative

diffusion smoothing proposed in [Chu01] (CH) (authors’ imple-
mentation).

For every method that allows the user to tune its parameters
(namely NC, KA, AP, MA) we adopt the default algorithm settings
as proposed by the authors without altering the neighbour size or
the smoothing intensity. While this is in itself a fair way for com-
paring different methods, there could be a parameter optimization
that better suits the problem we are considering. Anyway, the lacks
of criteria for tuning the parameters and the lack of ground-truths
convinced us to keep the default settings. Depending on the tech-
nique, different surface variations are highlighted: this implies there
is not a best method for all applications. Not only, the peculiarity
of a method like the sensitivity to small scales of the geometric
variations, could become a detriment in applications that need, for
example, a noise estimation.

3. Results

In this paper we limit the comparison to the mean curvature val-
ues. Figure 2 visually overviews the results we obtained. The mean
curvature is represented with colors and it ranges from −2 (blue)
to 2 (red). Such an interval intuitively spans the visible curvature
variations in the 3D models (i.e.: a rough approximation of the the-
oretical extreme values of the curvature). Curvature values that ex-
ceeds from that interval are considered as outliers. An exception

M1 M2 M3 M4 M5 M6 M7
AP 5.5% 17.1% 8.3% 1.6% 54.7% 51.3% 76.8%
CH >0.05% 0.9% 1.0% >0.05% 10.3% 10.5% 35.1%
DO 0.1% 2.6% 0.7% 0.1% 28.2% 26.6% 52.4%
KA >0.05% 1.1% >0.05% >0.05% 26.4% 24.3% 49.0%
MA 0.8% 5.8% 4.7% 0.3% 31.2% 29.4% 60.7%
QF 0.4% 2.3% 0.5% >0.05% 24.7% 23.7% 49.3%
NC 0.7% 2.4% 0.1% >0.05% >0.05% 0.1% 0.2%
TR 0.1% 2.0% 0.3% >0.05% 26.2% 24.6% 51.1%

Table 1: Percentage of mesh vertices classified as a outliers.

is the NC method, which approximates the tangent bundle of the
curvature tensor rather than the curvature values. Looking at the
curvature variation we select the interval [−0.05,0.05] as reference
interval for NC.

As already highlighted in [VVP∗16] every approximation algo-
rithm suffers of ambiguities, like the non-uniqueness of the fitting
surface or the sensitiveness of the method to local perturbations.
Looking at Figure 2, we can see that DO, CH, KA, MA, QF and
TR output very similar mean curvature estimations. This group of
methods is able to effectively highlight small repeated variations
(beard and circlets in M5 and M6), while consistently keeping at 0
the curvature estimation on the flat areas. A downside is that these
methods seem to output mainly extreme curvature values (around
±2) and 0, rarely passing through other values (it can be observed
by the lack of orange/light blue vertices). DO (see M2) presents a
greater continuity of the colors. In this sense, the best approxima-
tion is obtained by NC (especially visible in M1 and M2). Also,
NC is one of the few methods that put high contrast in the curva-
ture values on convex/concave areas of the model, together with
AP. A downside of AP is its sensitiveness to really small variations,
especially visible in the flat areas in M7.

Tables 1 and 2 present some statistics on the outlier distribution.
For this analysis, the absolute value of the curvature estimations is
considered. The values in Table 1 represent the percentage of ver-
tices that are out of the expected curvature interval. The values in
Table 2 give an idea of the range of variation of the mean curvature
in correspondence of the outliers (in terms of the 5− th decil, last
permil and maximum value). The results in Table 2 suggest that for
meshes with dense vertices like those adopted in our experiments,
the NC approach is the most stable in terms of the absolute vari-
ation of the mean curvature. Considering both Tables 1 and 2, the
5− th decil, which is an approximation of the average of the mean
curvature in the outliers, is very close to 2 in most cases. Note that
our definition of the curvature outlier bases on the empirical obser-
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Figure 2: Visual representation of the mean curvature values for the eight algorithms. The color-bar is reported at the bottom. The value for
NC are re-scaled into [−2,2] from [−0.05,0.05].

vation that for many smooth surfaces the mean curvature values are
enclosed in the interval [−2,2]; however, the presence of many out-
liers does not necessarily imply that a method is unstable. Also, as

in the case of NC, the values estimated by a given method could be
consistent in terms of variation even if the values are not those that
we expect from the theory behind the curvature on surfaces. This
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M1 M2 M3 M4 M5 M6 M7
2.56 2.98 2.71 2.47 4.61 4.77 8.10

AP [9.28] [15.73] [11.74] [8.19] [30.53] [31.66] [72.47]
<105> <106> <22.58> <11.55> <77.27> <87.44> <363.7>
2.30 2.50 2.70 2.34 2.66 2.76 3.56

CH [14.04] [14.61] [13.65] [6.30] [12.18] [12.21] [25.53]
<14.04> <39.77> <36.71> <6.30> <112.9> <185.1> <2649>

2.24 2.44 2.47 2.31 3.28 3.33 4.76
DO [31.08] [10.45] [37.97] [8.88] [22.31] [20.86] [35.11]

<31.94> <22.73> <187.1> <8.92> <164.1> <139.2> <582.4>
2.27 2.36 2.33 2.33 3.17 3.20 4.38

KA [55.71] [7.49] [40.09] [6.95] [12.92] [12.73] [27.48]
<55.71> <17.42> <40.09> <6.95> <78.18> <56.50> <5296>

2.34 2.66 2.99 2.40 3.38 3.47 5.06
MA [15.89] [14.65] [38.48] [12.20] [93.92] [130.8] [119.1]

<84.21> <26.51> <1097> <23.34> <108> <107> <105>
2.34 2.57 2.39 2.31 3.24 3.27 4.44

QF [23.67] [22.70] [8.90] [7.30] [17.15] [18.37] [37.53]
<32.23> <74.22> <182.9> <7.30> <1074> <6465> <9568>

0.056 0.056 0.056 0.052 0.054 0.057 0.064
NC [0.246] [0.459] [0.112] [0.060] [0.092] [0.213] [0.303]

<0.260> <0.821> <0.115> <0.060> <0.092> <0.213> <0.337>
2.22 2.44 2.35 2.24 3.18 3.23 4.61

TR [12.93] [8.32] [14.84] [6.61] [14.29] [14.49] [34.26]
<12.93> <14.23> <42.34> <6.61> <29.34> <43.14> <6485>

Table 2: Approximated 5− th decil, [last permil] and <maximum
values> of the curvature in correspondence of the outliers.

fact confirms that all the methods provide a reasonable estimation
of the curvature values, with the exception of NC, which captures
the curvature variations rather its values.

4. Conclusion

The results shows that no a single estimator is suitable for all possi-
ble input data but the methods that smooth the curvature estimation
in a vertex neighbour provide visually and quantitative better per-
formances when highlighting features on scans of manufacts.

Further investigations are necessary for meshes with different
densities of the vertex distribution because this would further al-
ter the uniformity of the curvature estimation. Also, despite what
stated in Section 2, different choices of the algorithm settings are
worth to be further analyzed. Aside the mean curvature, we plan
to extend the same analysis framework to other curvature-based
properties like shape index and curvedness, both to confirm the be-
haviour of the algorithms for these quantities and to study which of
these quantities is the most suitable for relief characterization.
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[VVP∗16] VÁŠA L., VANĚČEK P., PRANTL M., SKORKOVSKÁ V.,
MARTÍNEK P., KOLINGEROVÁ I.: Mesh Statistics for Robust Curva-
ture Estimation. CG Forum 35, 5 (2016), 271–280. 1, 2

[ZGYL11] ZHIHONG M., GUO C., YANZHAO M., LEE K.: Curvature
estimation for meshes based on vertex normal triangles. Computer-Aided
Design 43, 12 (2011), 1561 – 1566. 1

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

28


