
EUROGRAPHICS 2018/ O. Diamanti and A. Vaxman Short Paper

Creating New Chinese Fonts based on Manifold Learning and
Adversarial Networks

Yuan Guo, Zhouhui Lian†, Yingmin Tang, Jianguo Xiao

Institute of Computer Science and Technology, Peking University, PR China

Figure 1: Illustration of our Chinese font manifold. On the left, we visualize a manifold learned from 72 existing Chinese fonts which are
denoted as dark points. Every point sampled from the manifold represents a unique font. On the right, we show a text rendering example in
which each character is rendered in a different font style derived from the manifold. Characters in the first row are rendered in existing fonts
while the others are in new font styles generated by randomly selected points in the manifold. Here, four character examples of new fonts are
marked in the colors of their corresponding points in the manifold.

Abstract
The design of fonts, especially Chinese fonts, is known as a tough task that requires considerable time and professional skills.
In this paper, we propose a method to easily generate Chinese font libraries in new styles based on manifold learning and
adversarial networks. Starting from a number of existing fonts that cover various styles, we firstly use convolutional neural
networks to obtain the representation features of these fonts, and then build a font manifold via non-linear mapping. Using
the font manifold, we can interpolate and move between those existing fonts to get new font features, which are then fed into a
generative network learned via adversarial training to generate the whole new font libraries. Experimental results demonstrate
that high-quality Chinese fonts in various new styles against existing ones can be efficiently generated using our method.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation; I.2.4 [Artificial Intelligence]: Learning—Connectionism and neural nets

1. Introduction

With the worldwide adoption of digital messaging, we have access
to various types of fonts. However, designing new fonts, especially

† Corresponding author. E-mail: lianzhouhui@pku.edu.cn

Chinese fonts, is a time-consuming task and requires expertise.
Currently, convolutional neural networks (CNNs) have shown im-
pressive capacity in many generative tasks, such as image synthe-
sis [DTSB15] and texture transfer [ZZP∗17]. Motivated by these,
we aim to develop a new method based on CNNs and manifold
learning to efficiently generate high-quality new Chinese fonts.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

DOI: 10.2312/egs.20181045

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egs.20181045

Y. Guo et al. / Creating New Chinese Fonts based on Manifold Learning and Adversarial Networks

Figure 2: An overview of our manifold building procedure.

Up to now, several methods regarding font generation have been
presented. [CK14] proposed a method to build an English font man-
ifold, which is essentially an outline based manifold. But failures
always occur if the outlines of a character in different styles are
quite dissimilar from each other. [LZX16] presented a font genera-
tion method in which users need to input a set of sample characters.

Deep learning methods have been widely used in image synthe-
sis. Generative Adversarial Networks (GAN) [GPAM∗14] excel at
synthesizing realistic images. “pix2pix”, proposed by [IZZE16], is
an efficient image to image style-transfer framework, which com-
bines U-net architecture and adversarial training. However, those
methods fail to generate high-quality images with complex shapes.

In this paper, we propose a method to automatically generate
new Chinese fonts. Due to the complicated structures of Chinese
characters, we decompose a glyph into two parts: the skeleton and
outline shape. Given a set of training fonts, for each character of
each font style, we extract feature vectors to represent its skeleton
and outline shape, respectively. Then, we map these vectors into
a low dimensional manifold by using a dimension reduction tech-
nique. By smoothly interpolating or extrapolating in the manifold,
we can get some new feature vectors with reasonable properties.
Feeding a new feature vector into the trained deep neural network,
we can get a character in new font style. In this manner, we finally
come up with a strategy that makes the automatic generation of
large-scale Chinese fonts in brand new styles possible.

2. Method

Our method contains three steps. First, we need to extract the font
feature vectors for all training data. Then, we learn font manifolds
using the vectors. Finally, we train a generative network via adver-
sarial training to synthesize character images.

2.1. Feature Extraction

As mentioned above, the information of a given glyph can be de-
scribed by its skeleton and outline shape. Thus, the feature vector
also consists of two parts: skeleton vector and shape vector.

Skeleton Vector: Since existing methods are not able to accurately
extract the skeleton of every stroke for all Chinese characters due
to their complexity, as shown in Figure 2, we manually label the
key points of each stroke in the same stroke order of a standard

(a) (b)

Figure 3: (a) Visualization for the shape vectors of 10 fonts. (b)
Comparison of results synthesized by the networks with pixel loss
and modified pixel loss, respectively.

reference character. Then, those key points are utilized to build the
skeleton vector. It should be noted that the same character in dif-
ferent font styles may have different numbers of manually-labeled
key points, which makes the length of skeleton vector unequal. So
distance-based uniform up-sampling is applied after labeling to en-
sure the numbers of sampled points for each character in differ-
ent font libraries are identical. Since a character consists of some
strokes, the information that each point belongs to which stroke is
also saved as an extra file, which will be used latter.

Shape Vector: As shown in Figure 2, we adopt a CNN model to
compute the shape vector. Specifically, the VGG19 model [SZ14]
is utilized with some modifications to train a font classifier. We
change the neuron number of FC7 layer from 4096 to 50, and the
last softmax layer is also modified to match the number of font
classes. Finally, the output of FC7 layer of the trained VGG19
model is selected as the shape vector of a given character.

We visualize the shape vectors of 10 fonts in Figure 3, where
characters in the same font are gathered together. In order to build
a font manifold, we have to describe the style of all characters in a
font library as a same shape vector. Thereby, we utilize the average
shape vector of these characters as their shape vector.

2.2. Building Font Manifold

The Gaussian Process Latent Variable Model (GP-LVM) [Law04]
is a non-linear probabilistic dimensionality reduction technique,
which maps a high dimensional dataset Y to a low dimensional
‘latent’ dataset X . After feature extraction, we obtain several high
dimensional feature vectors and attempt to find a latent space to
represent them. Therefore, GP-LVM is well suited for our purpose.
As shown in Figure 2, by using GP-LVM, we can build a manifold
for each character in various fonts. Details are presented below.

Suppose there are M font libraries available, we have M high
dimensional feature vectors, and each vector is composed by con-
catenating the skeleton vector and shape vector as follows

Y =
[

y1 y2 · · · yi · · · yM
]T

, (1)

yi =

[
vsp,i
vsk,i

]T

, (2)

where yi denotes the i-th feature vector, vsp,i and vsk,i are the shape
vector and skeleton vector, respectively. Elements of the feature

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

62

Y. Guo et al. / Creating New Chinese Fonts based on Manifold Learning and Adversarial Networks

Figure 4: The Character Rendering Network.

vector should be normalized into [0,1], and it is also subtracted by
its mean vector to ensure the zero mean.

GP-LVM considers that every vector is independent of others,
and the likelihood of Y is defined by

P(Y |X ,θ) =
M

∏
i=1

N(yi|0,C(X ,X |θ)+σ
2I), (3)

k(xi,x j) = αexp(−β‖xi−x j‖2
2), (4)

where N means Gaussian distribution, I is the identity matrix, and
σ is a noise variance that accounts for miss matches. C(X ,X |θ)
denotes the covariance matrix calculated by covariance function
k(xi,x j). We get the latent variables by maximizing the likelihood
jointly over the latent vectors X = [· · ·xi · · ·]T as well as the hyper-
parameters θ as follows

X∗,θ∗ = argmax
X ,θ

[log(P(Y |X ,θ))]. (5)

The latent vectors are initialized with the PCA reduction values of
Y , and hyperparameters θ are initialized with a uniformative prior.
Gradients can be calculated by using Conjugate Gradient [Law05].

With the learned font manifold, new feature vectors can be re-
constructed. Let x̂ be a point in the manifold, the corresponding
high dimensional vector ŷ can be calculated by

ŷ =C(x̂,X∗|θ∗)[C(X∗,X∗|θ∗)]−1Y, (6)

where [C(X∗,X∗|θ∗)]−1 is precomputed. Afterwards, we add the
mean feature vector to ŷ and get the data that contains the skeleton
vector and shape vector.

After generating a new feature vector from the manifold, we have
its shape vector vsp and skeleton vector vsk. Assume that we want
to create a font library with large numbers of Chinese characters
in the same style, we still need to compute the skeleton vectors
of all other characters that share the same shape vector. In other
words, given another character, we need to find a point x̂ whose
corresponding shape vector’s value is also vsp in its manifold. The
point can be found by solving the following optimization task

argmin
x̂

‖v̂sp−vsp‖1

s.t.
[

vsp
vsk

]T

=C(x̂,X∗|θ∗)[C(X∗,X∗|θ∗)]−1Y,
(7)

which can be solved by applying the simulated annealing algo-
rithm [KGV∗83].

Eventually, by searching over all the other characters’ manifolds
to find their most matched corresponding points, we get all the
skeleton vectors we need and feed them into a generative neural
network, which is called Character Rendering Network, to synthe-
size the complete shapes of all characters.

2.3. Character Rendering Network

Architecture: As shown in Figure 4, since the input of the network
is an image, we need to plot the points in the skeleton vector and
link points sequentially in each stroke. Here, we use the extra file
saved in skeleton vector extraction to link the points which belong
to the same stroke.

Our network consists of two parts. The first part contains several
convolution layers and outputs an encoded vector. We concatenate
the encoded vector with our shape vector as the input of the sec-
ond part of our network, which has several up-convolution layers
and outputs a rendered image. Similar to [IZZE16], we connect the
layers of the first part to the corresponding layers in the second
part. Furthermore, for adversarial training, we use a discriminative
network, which is the same as the one used in [IZZE16].

Loss Function: In our network, we combine the adversarial loss
with a modified pixel-wise loss mentioned below. Here, we denote
the input image and desired output image as Ii and Îi, respectively.

For adversarial training, the GAN framework learns two net-
works with competing losses. Our network G acts as a image gener-
ator trying to fool the discriminator, and the discriminator D tries to
distinguish between generated and real images. We use the adver-
sarial losses L(G) and L(D) defined in GAN [GPAM∗14] as follows

L(G) = ∑
i

log(1−D(G(Ii))), (8)

L(D) =−∑
i

log(D(Îi))−∑
i

log(1−D(G(Ii))). (9)

To ensure the quality of synthesis results, we use pixel-wise loss
(L1 distance) in our loss function. The key idea is that since we
focus more on the outlines, we need to assign different weights
on different pixels. Namely, pixels near the outlines have a higher
weight than others. Specifically, the pixel-wise loss is computed by

L(pixel) = ∑
i

Wi
∥∥Îi−G(Ii)

∥∥
1 , (10)

where Wi is the weight matrix. Finally, the loss function of our

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

63

Y. Guo et al. / Creating New Chinese Fonts based on Manifold Learning and Adversarial Networks

Figure 5: Interpolation and jointly changing results.

Figure 6: Demonstration of an example font manifold for Chinese
character “bai” and synthesis results obtained from the manifold.

Character Rendering Network is defined as:

Lloss = L(G) +L(pixel). (11)

3. Experiments

Training details: We collect 72 font libraries for training. For each
font, we manually label the skeletons for 2,000 characters. As for
the Character Rendering Network, the input image has a resolu-
tion of 256×256, and there are 7 convolution layers and 7 up-
convolution layers. They both have 256 4×4 kernels and 2×2 stride
with ReLU [NH10] as the activation function. We train the network
for 40 epochs with batch size 32 and learning rate 0.001. Here, 40
epochs is maximum. During training, we calculate the mean error
of each iteration. If the error doesn’t decrease in the previous 1k
iterations, we regard the network as well-trained and stop training.

Loss function comparison: We compare different results obtained
via the modified pixel-wise loss and normal pixel-wise loss. As
shown in Figure 3(b), the image quality is better with the modified
pixel-wise loss.

Manifold interpolation and exploration: We perform interpola-
tion and exploration in the manifold. As shown in Figure 5, we
choose some points which are colored, and interpolate among them.
As shown in the first and third rows, we observe that our method
can produce a smooth transformation and interpolation between
two fonts. Moreover, the exploration results, shown in Figure 6,
demonstrate the diversity of results synthesized by our manifold.

Font generation via jointly changing: Our method is capable of

generating jointly changing results. We use the strategy mentioned
above to find the most matched skeletons in another manifold and
then feed them into the Character Rendering Network. As shown in
the second and forth rows of Figure 5, every character corresponds
to the one in the first and third rows, respectively. We can find that
the points coordinate well between two characters and the glyphs in
the second and forth rows also have smooth changes between dif-
ferent font styles. Thus, the goal of generating large-scale Chinese
fonts in brand new styles is achieved.

4. Conclusion

Our paper proposed a novel method to generate new Chinese fonts
by building font manifolds learned from existing font libraries. The
method requires no input from users, and there is no limitation on
the size of character set. Experimental results demonstrated that
our method is capable of generating new and high-quality Chinese
fonts. Yet, there also exist limitations in our method. For example,
the jointly changing process sometimes fails due to the inevitable
reconstruction loss from the low dimensional space to high dimen-
sional space. In the future, we plan to apply some advanced tech-
niques and strategies to overcome those drawbacks.

Acknowledgements

This work was supported by National Natural Science Foundation
of China (61672056, 61472015 and 61672043) and Key Labora-
tory of Science, Technology and Standard in Press Industry (Key
Laboratory of Intelligent Press Media Technology).

References
[CK14] CAMPBELL N. D., KAUTZ J.: Learning a manifold of fonts.

TOG 33, 4 (2014), 91. 2

[DTSB15] DOSOVITSKIY A., TOBIAS SPRINGENBERG J., BROX T.:
Learning to generate chairs with convolutional neural networks. In
CVPR (2015), pp. 1538–1546. 1

[GPAM∗14] GOODFELLOW I., POUGET-ABADIE J., MIRZA M., XU
B., WARDE-FARLEY D., OZAIR S., COURVILLE A., BENGIO Y.: Gen-
erative adversarial nets. In NIPS (2014), pp. 2672–2680. 2, 3

[IZZE16] ISOLA P., ZHU J.-Y., ZHOU T., EFROS A. A.: Image-to-
image translation with conditional adversarial networks. arXiv (2016).
2, 3

[KGV∗83] KIRKPATRICK S., GELATT C. D., VECCHI M. P., ET AL.:
Optimization by simulated annealing. science 220, 4598 (1983), 671–
680. 3

[Law04] LAWRENCE N. D.: Gaussian process latent variable models for
visualisation of high dimensional data. In NIPS (2004), pp. 329–336. 2

[Law05] LAWRENCE N.: Probabilistic non-linear principal component
analysis with gaussian process latent variable models. JMLR 6, Nov
(2005), 1783–1816. 3

[LZX16] LIAN Z., ZHAO B., XIAO J.: Automatic generation of large-
scale handwriting fonts via style learning. In SIGGRAPH ASIA 2016
(2016), ACM, p. 12. 2

[NH10] NAIR V., HINTON G. E.: Rectified linear units improve re-
stricted boltzmann machines. In ICML-10 (2010), pp. 807–814. 4

[SZ14] SIMONYAN K., ZISSERMAN A.: Very deep convolutional net-
works for large-scale image recognition. arXiv (2014). 2

[ZZP∗17] ZHU J.-Y., ZHANG R., PATHAK D., DARRELL T., EFROS
A. A., WANG O., SHECHTMAN E.: Toward multimodal image-to-
image translation. In NIPS (2017), pp. 465–476. 1

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

64

