
EUROGRAPHICS 2018/ O. Diamanti and A. Vaxman Short Paper
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Figure 1: Comparing 6 different normal fields for a region of a shaded Catmull-Clark subdivision surface. Left: nL: with surface normals
artifacts are clearly visible. nS: subdivided normals yield a result that is too smooth.A1: a linear blend of nL and nS shows artifacts. Right:
three different subdivision blends of nL and nS. A2: blend weights at EVs set to 1 shows improvement over linear blending, but does not
remove all artifacts.A3: weights at EVs after one subdivision step set via the limit stencil still shows artifacts.A4: blend weights at EVs and
their one-ring neighbourhood set to 1 gives the best overall result. Reflection lines are shown next to each shaded rendering.

Abstract

The concept known as subdivision shading aims at improving the shading of subdivision surfaces. It is based on the subdivision
of normal vectors associated with the control net of the surface. By either using the resulting subdivided normal field directly,
or blending it with the normal field of the limit surface, renderings of higher visual smoothness can be obtained. In this work
we propose a different and more versatile approach to blend the two normal fields, yielding not only better results, but also a
proof that our blended normal field is C1.

CCS Concepts
•Computing methodologies → Rendering; Shape modeling;

1. Introduction

The concept of subdivision shading [AB08] proposes the applica-
tion of a selected subdivision scheme to both the vertices and the
normal vectors of a control net defining a subdivision surface. As
such, a C1 subdivided normal field nS is obtained that is smoother
than the C0 normal field nL of the limit surface. The advantage of
using nS is that renderings of increased visual smoothness can be
obtained. In contrast, using only nL might highlight undesired arte-

facts that often occur in subdivision surfaces around extraordinary
vertices (EVs).

The original work mentions two different approaches (which we
refer to asA1 andA2) with regard to blending nS and nL. The moti-
vation for blending them is that surface renderings benefit from us-
ing nS only around EVs. Using nS everywhere might result in sur-
faces that look too smooth in the sense that desired detail is lost. In
both approaches, the vertices of the initial control net are initialised
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with a blending weight of 1 in case of EVs and 0 otherwise. Upon
subdivision, the weights of the new vertices are either interpolated
(bi)linearly (A1), or found by applying subdivision (A2). It follows
that in the former case, nS is only used in the one-ring neighbour-
hoods of EVs, resulting in sharp transitions in the blended normal
field. In the latter case, the weights of updated EVs generally do
not remain 1 for approximating subdivision schemes. As such, the
blended normal field does not equal nS at the limit positions of
EVs, but also relies on nL. Therefore, the resulting blended normal
field is not C1 in either case.

In this work we improve upon subdivision shading by introduc-
ing a more versatile blending approach,

nB = (1−bp)nL +bpnS, (1)

where nB is a C1 blended normal field, b a suitably chosen blend-
ing function, and p ∈ R a parameter that can be used to tune the
blending per vertex or globally. Applying this approach typically
results in better shading compared to [AB08]; see Fig. 1.

After discussing necessary preliminaries in Section 2, we focus
on the blended normal field nB and the subdivision blending func-
tion b in Section 3 and prove that nB is C1 for suitable functions b.
Details regarding implementation are considered in Section 4. Fi-
nally, Section 5 shows, compares, and discusses our results.

2. Preliminaries

This section briefly describes the building blocks required for
studying the blended normal field nB.

Subdivision surfaces are a modelling technique commonly used
to create geometries for animated movies, and are being adopted
increasingly by both the video game and computer-aided design
(CAD) industries. Starting from a coarse mesh, referred to as the
control net, repeated refinement and smoothing results in a limit
surface that is typically C2 smooth everywhere except at so-called
extraordinary points (EPs) where the surface is merely G1, which
becomes C1 when a specific (re)parameterisation is used [Rei95].
These EPs are the limit positions of extraordinary vertices (EVs),
which are vertices in the original control net with a valency n dif-
ferent from the regular valency, which depends on the subdivision
scheme and is 4 for Catmull-Clark [CC78] and 6 for Loop [Loo87]
subdivision, the two schemes we focus on.

The refine and smooth operations, together referred to as a sub-
division step, are captured by stencils which represent affine com-
binations of vertices (or attributes of vertices such as texture coor-
dinates, colour, or weights). Although a vertex in the initial control
net only reaches its eventual position on the limit surface after a
theoretical infinite number of subdivision steps, it can also be pro-
jected to that position from the mesh using a limit stencil. As such,
the position of an EP can be computed directly from the corre-
sponding EV and its neighbourhood. Similarly, other limit stencils
are available for the computation of tangent vectors (and therefore
also the normal vector) at an EP [AS10]. Away from EPs the partial
derivatives of the limit surface are readily computed using the rele-
vant spline representation for the regular parts of the surface (which
are uniform bicubic B-splines for Catmull-Clark and quartic three-

directional box-splines for Loop subdivision) and can subsequently
be used to compute the normal vector.

Shading: When rendering a subdivision surface, either as a
dense mesh or as a parametric surface, the normals of the surface
are required to compute diffuse and optionally specular reflections.
Smooth normal fields are indispensable for aesthetically pleasing
results, and therefore require surfaces of high geometrical continu-
ity. In the case of subdivision surfaces, this demand is met away
from the EPs. At the EPs the surface normal field nL is merely con-
tinuous, which can cause artefacts when lighting the surface.

Subdivision of normals: As unit normals are points on the unit
sphere S2, they should be subdivided as such, i.e., as points on S2.
This procedure, called spherical averaging, is iterative within each
subdivision step and relies on the exponential map and its inverse.
Although it was observed in [AB08] that it results into a smooth
normal field, a formal proof remains elusive. We implemented both
linear and spherical averaging of normals and observed that the dif-
ferences when applying subdivision a few times are negligible. In
our experiments the maximum angle between these normals was
close to zero degrees. All our results rely on linear averaging, which
leads to a normal field nS that is C1 everywhere.

3. Smooth blended subdivision shading

We now focus on (1), showing that the use of certain blending func-
tions b defined on the subdivision surface ultimately results in a
blended normal field nB that is C1 at EPs and reduces to the origi-
nal limit surface normals in regular regions. We start by stating the
following theorem (its proof can be found in the Appendix).

Theorem 1 Let b be a subdivision limit function of Catmull-Clark
or Loop subdivision such that b attains the value of 1 and a local
maximum (∇b = 0) at each EP, and let p be a positive real number.
Then nB defined in (1) is globally C1 for p > 1. For p < 1 the claim
is valid only up to a certain valency which depends on the value of
p and the underlying subdivision scheme; see Figure 2.

We consider two approaches for constructing a suitable blend-
ing function b. Our first attempt, A3, forces the blending weight at
an EP to be 1 by employing a generalised limit stencil [LSNC09].
More precisely, the contribution wn of the EV itself in the limit sten-
cil is computed, after which a blending weight of 1

wn
is assigned to
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Figure 2: The ratio µp+1/λ
2 plotted against the valency n for

different values of p (0.5, 1.0 and 2.0) for Catmull-Clark (left)
and Loop (right). For both schemes, the ratio converges to 1 when
p = 1, and stays below 1 for p > 1. For p < 1 the ratio becomes
greater than 1 after a certain value of n, depending on the scheme.
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Figure 3: The univariate equivalents of the two types of blending
functions (A3 solid, A4 dashed) raised to different powers p (0.5,
1.0 and 2.0) shaded from dark red to bright red. The control nets
are shown in grey.

Figure 4: A comparison of different values for p (from left to right:
nL, p = 0.5, 1.0 and 2.0) usingA3 for a Catmull-Clark subdivision
surface with a central EP. The first row shows the shaded surface
and the second row shows isophotes.

the EV. Assigning zero weights to vertices in the one-ring neigh-
bourhood N1 of the EV then guarantees a blending weight of 1 at
the EP, but only ifN1 does not contain other EVs. In the latter sce-
nario, where a face contains multiple EVs, this procedure clearly
does not work. Although EVs can be separated further by applying
subdivision, a denser mesh is not always desired. As such, we con-
sider a second approach, A4, which is more generally applicable.
In this setting, we assign a blending weight of 1 to EVs and to the
vertices in their N1. Clearly, this satisfies the required conditions
for constructing a suitable b. Note that for A3, only the two-ring
neighbourhood N2 of an EV is affected, whereas for A4, it is the
three-ring neighbourhoodN3 (see Figure 3).

The blending functions resulting from applying either approach
can subsequently be raised to a power p. Naturally, this does not
affect the support of b, but determines the rate of decay of b around
the EP; see Figure 3. The value of p can differ per vertex (or per
region if a face contains multiple EVs). A comparison of different
values of p can be found in Figure 4. One can see that a lower value
for p makes the result look smoother, while for a larger p-value the
effect is more local. The (default) value for p in all other figures
was set to 1.

Ultimately, we obtain a normal field with subdivided normals at
EPs, limit surface normals in the regular regions, and a C1 blend
of the two in the regions around EPs that correspond to the two- or
three-ring of faces around their associated EVs.

4. Implementation

In this section we briefly describe the steps involved in implement-
ing the proposed blending method.

Initialization: The geometry is represented by the provided con-
trol net (imported from e.g. an OBJ file) and is thus given. We do
not assume the file to contain normals. Instead, mesh vertex nor-
mals are calculated after a custom number of subdivision steps
by computing an area-weighted average of the normals of incident
faces. Likewise, the blending weights can be initialised after a cus-
tom number of subdivision steps for approaches A1, A2 and A4.
In case A3 is used, EVs have to be sufficiently separated first.

Subdivision: For all three types of subdivision (geometry, nor-
mals, blending weights) the same subdivision stencils are used. The
subdivision depth of each type can be controlled independently,
such that the subdivision of normals and/or blending weights can
start later than the subdivision of geometry.

Blending: After completing the last subdivision step, the two
normal fields are blended using Equation 1 based on the computed
blending weights.

Limit positions and normals: Given a mesh and vertex nor-
mals, we obtain the limit positions and normals by applying the
limit stencils of the used subdivision scheme. For our results in
Section 5 we always applied these limit stencils for the geometry.
Likewise, for the normals we applied these limit stencils when cal-
culating subdivided normals.

5. Results and discussion

We first compare the blending weights for all approaches Ak,
k ∈ {1,2,3,4}; see Figure 5. In scenarios with neighbouring EVs
and/or extraordinary faces, or EVs with high valencies, A4 per-
forms best.

Figure 6 and Figure 7 show isophotes for various (blended) nor-
mal fields in the case of Catmull-Clark and Loop subdivision, re-
spectively. The images clearly show that the subdivided normals
and the smooth blending of these normals with the surface normals
are smoother than the surface normals.

In the case of A3, it may seem possible to construct a suitable
b also in the case when there are edge- or face-connected EVs in
the control net. By collecting the limit stencils into one (possibly)
global linear system and inverting its matrix, one can achieve b = 1

Figure 5: Comparing the blending weights of A1 . . .A4 (left to
right) for a once-subdivided polar configuration (EV with a high
valency, n = 12, surrounded by triangles).A3 has to be subdivided
once more before the weights can be initialised.
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Figure 6: A comparison of nL (top left), nS (top right), A3 (bot-
tom left) and A4 (bottom right) for a region of a Catmull-Clark
subdivision surface.

Figure 7: A comparison of nL (left),A3 (mid) andA4 (right) for a
Loop subdivision surface.

at all EPs (such matrix is singular only in very special cases). How-
ever, we also need∇b= 0 at all EPs, see Theorem 1. All combined,
this results into three linear equations per EP, which will, in gen-
eral, result into an over-constrained linear system with no solution.
In summary, A4 is the preferred approach in most situations.
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Appendix Proof of Theorem 1

Proof We assume that the geometry s, the normal field nS, and also
b are (locally) parametrised using the characteristic map [Rei95],
and that the extraordinary point is at 0.
Observe that b, nL, and nS are all, by construction, at least C1 away
from 0 and so we only need to establish that nB is also C1 at 0. This
does not follow directly from (1), because nL is only C0 at 0, which
in turn means that the gradient of nL at 0 may not exist.
To resolve this, we apply the machinery devised in [RS01], and
further refined [PR04] and applied [KPR04] later, and study the
behaviour of 1−b and nL (and their derivatives) as we approach 0.
To simplify notation, we denote the oriented directional derivative
operator by D and write for instance D(b) instead of Dd(b) for a
particular (unit) direction d in the characteristic map at 0.

Let λ be the sub-dominant eigenvalue of multiplicity 2 and µ the
subsub-dominant eigenvalue of the subdivision scheme in question
(Catmull-Clark or Loop). Further, let sl denote the spline ring of
subdivision level l and Il and IIl its first and second fundamental
form, respectively. As shown in [PR04, Theorem 3.1], the dominant
terms of these forms are λ

2l and µl , respectively. Thus, the shape
operator (Weingarten map) Sl = IIl(Il)−1 of sl behaves (typically

diverges) as
(

µ
λ2

)l
when l →∞ at 0, and so does D(nl

L), the di-

rectional derivative of the normal vector nl
L = ∂1sl×∂2sl

‖∂1sl×∂2sl‖ of sl .
By assumption, b(0) = 1 and thus nB(0) = nS(0) by (1) for any
value of p. As b is continuously differentiable and attains a max-
imum at 0, it follows that D(bp) = pbp−1D(b) vanishes at 0. For
the spline ring sl of level l, (1) reads

nl
B = (1−bp

l )n
l
L +bp

l nl
S,

where bl is the spline ring of b of level l. Differentiating this yields

D(nl
B) =−D(bp

l )n
l
L+(1−bp

l )D(nl
L)+D(bp

l )n
l
S+bp

l D(nl
S). (2)

We now push l to the limit, l→∞, i.e., we approach 0. Since D(bp
l )

vanishes in the limit as observed above, the first and third summand
on the right-hand side of (2) vanish. As expected, the only problem-
atic term is the product (1−bp

l )D(nl
L). But this behaves as

µl p
( µ

λ2

)l
=

(
µp+1

λ2

)l

in the limit. This shows that the problematic term vanishes at 0
provided that µp+1 < λ

2. This is indeed the case for the Catmull-
Clark and Loop subdivision schemes at any valency for p > 1 as
depicted in Figure 2. For p < 1, this is only valid up to a certain
valency depending on the value of p. For example, with p = 1

2 , the
condition holds for Catmull-Clark up to n = 9 and for Loop up to
n = 11. However, we note that the default value is p = 1 and that
in practice p� 1 is rarely used, especially around vertices of high
valency. Consequently, D(nB) is well defined for p> 1 and behaves
as D(nS) at 0, which completes the proof.
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