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Figure 1: Real-time sphere tracing with soft shadows and ambient occlusion. Runtime = 47ms, resolution: 3440x1440, GPU: Nvidia 1080T:.

Abstract

This paper presents two performance improvements on sphere tracing. First, a sphere tracing variant designed to take optimal
step sizes near planar surfaces is proposed. We demonstrate how relaxation is used to make this method applicable to sphere
tracing arbitrary geometries and compare its performance to classical (by Hart) and relaxed (Keinert et al.) sphere tracing
in rendering various scenes. The method is also general in the sense that it can be applied in any scenario that requires the
computation of ray-surface intersections. Our second contribution is a multi-resolution rendering strategy that can be used with
any sphere tracing variant. By starting from a lower resolution and gradually increasing it, render times can be reduced.
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1 Introduction

Sphere tracing, introduced by Hart in [Har94] and first applied in
[JCHS89], is an iterative algorithm to compute the intersection of a
ray with a surface defined by a signed distance function (SDF) or
any of its lower estimates. Its ease of use and efficiency made it an
ideal choice for real-time rendering of SDF representations. Keinert
et al. [KSK*14] provided several improvements on the basic sphere
tracing algorithm in terms of both performance and quality.

We propose a modification to the sphere tracing algorithm in
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Section 3 based on the observation that converging to approxi-
mately planar entities is one of the most expensive situations for
existing sphere tracing techniques. To mitigate this, our enhanced
sphere tracing algorithm makes an optimal step along the ray as-
suming the surface is locally flat. This allows faster convergence in
such configurations. We also show how a step-size relaxation, sim-
ilar to that of [KSK* 14], makes this algorithm applicable to sphere
tracing not only planar but arbitrary geometries, including fractals.

Our second contribution, presented in Section 4, is a multi-
resolution based rendering strategy. Singed distance functions al-
low us to split a single ray into multiple others without penetrating
the traced surface. Using this, we empirically show that gradually
changing resolution can improve the performance of all algorithms.
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We discuss the results of our performance tests in Section 5, first
comparing our proposed enhanced sphere tracing algorithm to that
of Hart and Keinert et al., then we discuss our results on how reso-
lution change can increase rendering speeds.

2 Sphere tracing

Sphere tracing starts from the origin of a ray and marches itera-
tively until it approaches the surface within a prescribed threshold.
The step size in each iteration is the distance of the current point
along the ray from the surface. This distance defines a so-called
unbounding sphere about the current position within which it is
guaranteed that the volume has no points.

Let d(p, A) denote the distance of point p from surface A C R3.
The implicit mapping f : R3 — R is a distance function if

Vp : f(p)=d(p.{f =0}).

Furthermore, if { f = 0} defines the boundary of a volume, f is
a signed distance function if f(p) = d(p,{f = 0}) for every p
outside the volume and f(p) = —d(p,{f = 0}) if p is inside.

Although closed-form SDF representation of arbitrary geome-
tries is infeasible, Hart noted in [Har94] that it suffices to have a
lower bound on the real distance for efficient rendering.

More precisely, we say that the continuous function f : R3 — R
is a signed distance function estimation (SDFE), if and only if
there exists a ¢ : R3 — [1, K) bounded function (K € R), such that
f-q is a (signed) distance function.

Therefore, it is clear that basic sphere tracing in Algorithm 1
does not jump over an intersection.

In :p,veR3 |v|=1ray, f:R3— R SDF estimate

Out: ¢ € [0, 4-00) distance traveled along the ray

t:=0;, i:=0;

for i <imgx and f(p+1t-v) not too small; i :=i+1;do

| t:=t+f(p+t-v)

end

Algorithm 1: Basic sphere tracing adapted from [Har94].

Keinert et al. [KSK*14] noted that the step size of f(p+1-v)is
often too conservative and the SDF estimate value can be scaled up
most of the times. Nevertheless, if the unbounding spheres of two
consecutive steps are disjoint, one has to revert to a basic sphere
tracing step size, so Algorithm 2 does not skip intersections.

In : p,v € R3 ray, Ivi=1, SDFE f, relaxation parameter o

Out: ¢ € [0, +00) distance traveled along the ray

i:=0; r;:=0; rig1:=+o0c0 1:=0;

for i <imax and r;y1 not too small; i :=i 41 do
di=ri+w-ri;
riv1:=f(p+ @ +dj)-v);
if d; > rj +r;j4+1 then

d,’ =T,

riv1:=f(p+ @ +d;)-v);
end
t:=t+d;; rii=rit1;

end
Algorithm 2: Relaxed sphere tracing adapted from [KSK* 14].

They also proposed several modifications aimed at improving

image quality, but for the purposes of our paper, we refer to Algo-
rithm 2 as relaxed sphere tracing.

3 Enhanced sphere tracing
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Figure 2: Geometric construction of the enhanced sphere tracing
step to optimally approximate planar surfaces.

In this section, we propose an enhanced sphere tracing algo-
rithm that approximates planar surfaces optimally. This is achieved
by selecting a new point along the ray such that the previous and
the new unbounding spheres are tangential. To compute the next
point of sampling, the radius of this new, tangential unbounding
sphere is needed. Instead of using the SDF estimate and root find-
ing to compute it, we infer it from the previous two distance values
(i.e., unbounding radii), as depicted in Fig. 2; the radius of the next
sphere, r; 41 is the unknown. From the similarity of the striped tri-
angles, one gets the following equation and solving it gives r;41:

di-(ri —rit1) = (ri +ri+1)-(ri—1—1i)
di—rioitni M

riq1 =171i"
T ity

In :p,ve R3 ray, Ivl=1, SDFE f, relaxation parameter @
Out: ¢ € [0, 400) distance traveled along the ray
ri—1:=0; r;:=0; riy1:=+00;

di:==0; t:=0;
fori :=0; i <imax and rj41 not too small; i :==i+1do
N L Qi T
di i=rit o ditri1—ri ’

riv1:=f(p+ @ +dj)v);
if d; > r; +rjy then

di :=ri;

ri+1:= f(p+ @ +dj)v);
end
ti=t+dj;
Fi—1=Ti; Fi=TFit1;

end
Algorithm 3: Our enhanced sphere tracing algorithm.

If the surface is not planar, the actual SDF estimate value may
differ from our inference. This poses a problem if the current and
the previous unbounding spheres are disjoint since that might be an
indication of a missed intersection point. In such cases, Algorithm
3 falls back to a standard sphere trace step.

When the surface is locally convex, the unbounding spheres
overlap, so no correction is needed. Resorting back to the standard
sphere tracing is only required when the surface is locally concave.
However, relaxing this method by scaling down the inferred new
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Runtime, Error, and their product w.r.t. basic sphere tracing

Less is better. All values are divided by the same value of the basic sphere tracing algorithm.
e Time, relaxed + Time, enhanced e Error, relaxed + Error, enhanced

N\ o Time x Error, relaxed » Time x Error, enhanced

1.50

0.25
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Iteration count

Product of Error and Time w.r.t. a single resolution

Less is better. Time and error values were multiplied and divided by the same value of the single pass algorithm.
6 ®2res, basic = 2res, relaxed 4 2res, enhanced ¢ 4res, basic = 4res, relaxed /4 res, enhanced

® 6 res, basic = 6 res, relaxed 4 6 res, enhanced

4

Sum of iterations

Figure 3: Runtime and error statistics of the benchmarked algorithms, averaged over the 3 test scenes. On the left, we compare relaxed and
enhanced sphere tracing using basic sphere tracing as a baseline for both runtime and error. On the right, we compare multiple resolution
rendering strategies with a single resolution baseline. The horizontal axes display how many iterations the algorithms made in total.

radius decreases the occurrence of such fallbacks for concave ge-
ometries. In general, this allows a faster traversal of segments close
to the surface where basic sphere tracing would otherwise spend a
considerable amount of time. Also, since our inference is a linear
extrapolation of the new SDF value based on the previous two ob-
servations, step sizes increase rapidly as the ray is getting farther
away from a smooth surface. Therefore, when the ray misses an
object, enhanced sphere tracing makes it exit the scene faster.

4 Iteratively increasing resolution

The principal disadvantage of SDF representations is that func-
tion evaluation times grow rapidly with the increase of scene
complexity. There are practical solutions to handle more com-
plex scenes through space partitioning and bounding volumes
[Har94,KSK™* 14]; however, the slowdown is more severe compared
to the current triangle list based game engines, and often the above
methods are inefficient, for example, when rendering 3D fractals.

To solve this, we implemented the sphere tracing algorithms in
an interactive manner. Rendering tasks are grouped into passes,
and during the rendering of a single frame, multiple passes are ex-
ecuted. The amount of rendering passes is determined on-the-fly
using runtime statistics. Screen-sized textures are used to store the
state of rendering for each pixel, such as the distance traveled along
the ray. Other algorithms, like ambient occlusion and soft shadows,
are implemented iteratively as well. In the next frame, the compu-
tation can be continued incrementally as long as the camera or the
scene has not changed. This provides both a high-quality rendering
when the camera and the scene are stationary and real-time respon-
siveness when they are not.

Even though the implementation is massively parallel, the reso-
lution at which the scene is rendered is a significant factor in the fi-
nal render-time. Thus, the application was equipped with the ability
to change resolution between passes dynamically. Moreover, vary-
ing resolution between passes often yields shorter rendering times
while achieving the same final resolution and perceptually equiva-
lent image quality.

When rendering at a given resolution, cone-tracing is used to
support resolution increase. Cone-tracing ensures that no surface
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point lies inside the cone. Thus, for any smaller new cone starting
from where the previous cone has stopped, it is guaranteed that
no intersection is skipped. The terminating condition for the pixel
cone, assuming rectangular pixels, becomes

V2t
Vwidth? + height? '
where width-height is the total number of pixels. This allows

an arbitrary increase in resolution because the starting position for
each new pixel is always the closest pixel in the previous resolution.

f(p+1tv) < )

Remark 1 Eq. 2 can be incorporated into the SDFE f, so when
tracing this modified function, the algorithms do not overstep the

N2
Jwidth?>+height?’
spect g(¢) := f(p+tv)—a-t. Let Lip f <1 denote the Lipschitz
constant [EEJ04] of function f. Since f is an SDFE,

nonzero boundary. Let o := then we can in-

Lipg < Lipf +Lip(t > a-t) < 1+a.

Therefore, the following one-dimensional SDFE can be used to ap-
proximate the distance that can be traveled safely:

fp+itv) «
l4+a 1+«

Also, there is no need for any special condition for termination.
This transformation efficiently offsets the surface by a value that
increases with distance.

F(t) = ot

5 Test results

All sphere tracing algorithms were implemented in GLSL using
a C++ test application (cg.elte.hu/~csabix/publications/
EG2018/). The implementation used two sets of canvas-sized tex-
tures and ping-ponging to render from one to the other. Smaller

Figure 4: Scenes used for render-time and error measurements.
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(a) Relaxed sphere tracing

(b) Enhanced sphere tracing

Figure 5: Ratio of oversteps between 17-24 iterations. White pixels
indicate that the algorithm had to step back at every iteration.
resolutions used a sub-rectangle inside the textures. Upon resolu-
tion change, nearest neighbor sampling was used for depth fetches,
while bilinear interpolation was used for color lookups.

Render pass scheduling and time measurements for benchmark-
ing used asynchronous GPU time queries for optimal performance
and measurement consistency. In both cases, values were smoothed
in time, and in the latter case, measurements were only taken after
a warm-up period. For error measurements, we created a ground
truth depth map of the scene using 10000 iterations of basic sphere
tracing. The camera was oriented such that no ray escaped to in-
finity to provide a practically exact base of comparison. At each
iteration, the error was measured as the squared length of the dif-
ference vector between the depth values of the ground truth and the
particular algorithm.

We used the three test scenes shown in Fig. 4 for our perfor-
mance tests. The first one is the Mandelbulb fractal. The second
scene is a simple composition of tori, spheres, boxes, and cylin-
ders. The third is a village with many planar surfaces implemented
such that the SDF evaluation time is high. The primary indicator
of performance was the execution time required to reach a pre-
scribed error threshold w.r.t. the ground truth. The performance
of enhanced sphere tracing was decisively better than that of the
relaxed and basic sphere tracing algorithm, see left of Fig. 3. We
used the product of error and execution time as a metric to describe
an error-decrease velocity. Even though the construction of a single
enhanced sphere trace step is more expensive than that of the other
two sphere tracing variants, its faster convergence rate makes it out-
perform basic sphere tracing after 64 iterations and relaxed sphere
tracing on every iteration count. Since the enhanced algorithm ap-
proximates smooth surfaces optimally, it can take longer steps and
rarely branches the execution by falling back to the standard sphere
trace step, see Fig. 5.

The Mandelbulb fractal was used to test performance against
non-smooth surfaces. Both the relaxed and enhanced algorithms
performed slightly better than the basic algorithm, but they were
on par with each other within the margin of error. The combined
result of the error values and render times, the green lines, indi-
cate a consistent advantage of enhanced sphere tracing over the re-
laxed algorithm, up to 1.5 times better. The relative errors start to
increase gradually because the relaxed and enhanced sphere trac-
ing algorithms approximated the surface within threshold already,
while standard sphere tracing was only beginning to catch up.

On the right of Fig. 3, we compare three possible render-pass
schedules with variable resolutions for each of the three algorithms
averaged over the three scenes, all with respect to the single-pass,

single-resolution test-case. When two resolutions were used, the
first one was % of the final. For four resolutions, it is %, %, %, and
then the full resolution was rendered. Similarly, for six resolutions,

. : 11125
we used the resolution ratios of ¢, 3,5, %, 2,1

The iterations in each render-pass sum up to the iteration count
on the X-axis. However, we found that just by subdividing the it-
erations equally into the render-passes resulted in inferior perfor-
mance. For the two render pass test case, we put % of the iterations
into the first pass, and the rest to the last. For the four render pass
schedule, the pattern %, %, %,% was used; and for the six resolu-

tion changes, we divided the iterations into passes with the pattern
111113

88878788

Increasing the resolution performs differently under different it-
eration counts and algorithms. Using higher iteration counts, the
enhanced algorithm performs better if the resolution changes less.
Basic sphere tracing performs better using fewer iterations. This
means that many good rendering strategies are available, some pro-
vide faster results, some better quality, and some work well with
fractals. For example, the performance of enhanced sphere tracing
can be increased by up to 20% using two resolutions instead of only
one.

6 Conclusions

This paper presented two strategies to improve sphere tracing per-
formance: one by altering the sphere tracing algorithm itself and
the other by the manner in which it is applied.

The first approach was validated by comparing our enhanced
sphere tracing variant to that of Hart and Keinert et. al. We have de-
termined that when taking into account how fast the algorithm ap-
proximates the surface within an error threshold, our novel method
can perform up to 50% better.

The second strategy, gradually increasing resolution as sphere
tracing progresses, offers a possible improvement in the case of all
algorithms. Nevertheless, the scale of its effect depends on the algo-
rithm in question. Generally, we conclude that algorithms that con-
verge slower can expect a smaller gain from the application of our
multi-resolution strategy. Selecting an optimal resolution change
strategy is subject to further research.
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