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Figure 1: Comparison between two state-of-the-art view-interpolation techniques [KWR16, SBB17] with our approach. All cases upsample
64 recorded views to a total of 15×15 = 225 views. Applied sampling masks are shown at the top right (black: sampled, white: upsampled,
red: shown view). PSNR in dB is computed for all reconstructed views with respect to the ground truth (for which all 15× 15 views were
available). Spatial and EPI close-ups are presented at the bottom, where green and red lines indicate corresponding slice positions.

Abstract
Optimized sampling masks that reduce the complexity of camera arrays while preserving the quality of light fields captured
at high directional sampling resolution are presented. We propose a new quality metric that is based on sampling-theoretic
considerations, a new mask estimation approach that reduces the search space by applying regularity and symmetry constraints,
and an enhanced upsampling technique using compressed sensing that supports maximal patch overlap. Our approach out-beats
state-of-the-art view-interpolation techniques for light fields and does not rely on depth reconstruction.
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•Computing methodologies → Computational photography; Image-based rendering;

1. Introduction and Related Work
Sampling light fields at an adequate spatial and directional reso-
lution is challenging. While under-sampling in the spatial domain
leads to missing scene details, under-sampling results in severe
bokeh artefacts in out-of-focus regions when sub-sampled direc-
tional information are combined. Camera arrays used for light-field
recording suffer mainly from directional under-sampling.
Coded directional sampling and upsampling strategies for direc-
tionally sparse light-fields have shown previously to beat related
view-interpolation techniques [SBB15, SBB17]. In this paper, we
propose a new sampling strategy that leads to even superior results.
Given an arbitrary number of samples (e.g., available cameras),
we determine an optimal (by means of a proposed quality met-
ric) configuration within a given grid of arbitrary output resolution.
In contrast to previous work, our new quality metric is based on
sampling-theoretical considerations. It does neither rely on learned
global dictionaries or external databases for mask optimization as
in [SBB17], nor on user-defined guidelines that restrict the number
of mask samples as in [SBB15]. For up-sampling we apply com-
pressed sensing that uses local dictionaries recorded with our sam-
pling mask as in [SBB17]. Our sampling masks, however, support

fully overlapping light field patches to be combined for reconstruc-
tion.
Various depth-based view interpolation techniques exist [WG14,
ZLD15,PDG14,KWR16]. Depth reconstruction, however, fails for
anisotropic scenes because they cannot be described sufficiently
in 3D. Our approach does not require depth information. Other
methods do not require depth explicitly, but still assume a Lam-
bertian scene model [LD10, VBG17], or require a X-shaped sam-
pling pattern [SHD∗14]. We do not make any specific assump-
tions about the recorded scene. Recent learning-based approaches
require a densely sampled input [YJY∗15] or reconstruct depth
[FNPS16, KWR16]. In comparison to our approach, these tech-
niques do not find optimized sampling patterns and rely on prede-
fined masks. Compressed sensing approaches [MWBR13,MCV14,
MKU15, CC16, KHR∗16] modify the optical path of classical or
plenoptic cameras and use sparse bases (e.g., DCT, trained global
dictionaries, or Gaussian mixture models) to reconstruct a full light
field. Although we also apply compressed sensing for reconstruc-
tion, we do not rely on any precomputed bases but directly record
a local dictionary with our sampling mask.
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Figure 2: Two examples of recorded samples SSS1,2 = (sss1,sss2,sss3)
with convex hulls (green) and position candidates ppp1 (interpola-
tion) and ppp2 (extrapolation). Although the distances of ppp1 to SSS1
and of ppp2 to SSS2 are identical, their barycentric coordinates (over-
laid numbers) vary: ‖λλλ‖1 is 1 for ppp1 and 2 for ppp2.

2. Proposed Method

We make three contributions that are presented in the following sec-
tions: First, a new quality metric that is based on sampling-theoretic
considerations (Sec. 2.1). Second, a new mask estimation approach
that reduces the search space by applying regularity and symmetry
constrains (Sec. 2.2). Third, an enhanced upsampling technique us-
ing compressed sensing that supports maximal patch overlap (Sec.
2.3). All three contributions lead to improved upsampling results,
when compared to existing techniques.
We use two-plane parametrization [LH96] and denote the angular
domain by U,V and the spatial domain by S,T .

2.1. Sampling Quality Metric

A classical quality metric for sampling masks is the maximized
minimum distance (MMD) [Kel06] which seeks for patterns that
maximize the minimal Euclidean distances of each sample to its
nearest neighbour. Although this ensures an even distribution of
sampling positions, it does not consider the implications of each
sample’s contribution for interpolating or extrapolating unsampled
positions.
Therefore, our new metric predicts the reconstruction quality at a
position ppp within a given pattern of N recorded samples at positions
SSS = (sss1,sss2, . . . ,sssN) in a U ×V grid:

Ep =
N

∑
i=1

di|λi| , (1)

where di is the Euclidean distance between ppp and sssi, and λλλ is the
generalized barycentric coordinate of ppp within SSS.
As for a MMD, a shorter di indicates a higher quality contribution
for interpolation from close samples. However, care has to be taken
for extrapolation cases. Void positions that are computed from in-
terpolation will (for the same di) lead to a better reconstruction
quality than positions that are computed from extrapolation.
Therefore, we additionally weight di by the corresponding absolute
component of the generalized barycentric coordinate |λi|. Note,
that ‖λλλ‖1 is always 1 for interpolation, and greater than 1 for ex-
trapolation (i.e., for positions ppp outside the convex hull of SSS).
Thus, our metric minimizes the distances to all samples but pe-
nalize extrapolation by the absolute barycentric coordinates (cf.
Fig. 2). While barycentric coordinates are uniquely defined for sim-
ple geometric cells with a small number of samples (e.g., triangles
with three samples), they are equivocal for structures with an arbi-
trary number of samples.

In our case we solve λλλ for the sparsest barycentric coordinates by

minimize
λλλ

∥∥ppp′−SSS′λλλ
∥∥2

2 , subject to ‖λλλ‖1 ≤ τ, (2)

where ppp′ is the extended vector (ppp,1)T , SSS′ is the extended matrix

SSS′ =
(

sss1 sss2 . . . sssN
1 1 . . . 1

)
,

and τ is some threshold that constrains the sparsity of λλλ. Equa-
tion (2) can be solved as LASSO optimization problem [Tib96].
To determine the quality of a sampling pattern that supports upsam-
pling with full patch overlap, as explained in Sec. 2.3, we split the
sampling pattern into (U −Û −1)× (V − V̂ −1) overlapping tiles
of size Û ×V̂ —each (horizontally and vertically) shifted across the
sampling grid at a minimal distance of 1 sample.
For each ppp, a maximum of Û × V̂ quality predictions exist. We av-
erage them for tiles that support interpolation (‖λλλ j‖1 = 1) while
excluding tiles that require extrapolation (‖λλλ‖1 > 1):

Ēp = 〈E j
p〉 j, for all j with‖λλλ j‖1 = 1. (3)

A special case is when no interpolating tile exist for a particular
ppp. In this case, we use the minimum prediction from all available
tiles.
Finally, the quality of the entire sampling mask is computed by
averaging the quality metrics across all sampling positions ppp:

Ē = 〈Ēp〉p. (4)

2.2. Sampling Pattern Estimation
Our goal is to find the pattern of N samples within a U ×V grid that
minimizes Ē. As the complexity for a brute force search is

(U×V
N

)
,

the example shown in Fig. 1, with 64 samples on an 15× 15 grid,
leads to more than 1041 combinatorial possibilities.
We propose two constraints that vastly reduce the search space and
therefore enable practical computation times: The sampling pattern
should be (i) as regular and (ii) as symmetric as possible.
Both constraints are motivated by the idea that each sampling posi-
tion in the grid is equally important. Irregularities and asymmetry,
however, would lead to regions that are more densely sampled than
others.
In fact, upsampling with local dictionaries, as explained in Sec.
2.3, requires a densely sampled (Û × V̂ ) region in the mask cen-
ter, called guidance area. The guidance area serves as a basis for
establishing the local dictionary used for upsampling and satisfies
both our constrains. The remaining R = N − Û · V̂ samples to be
distributed within the mask should do as well while minimizing Ē.
We first compute the next highest-resolution basis grid Ũ × Ṽ that
can contain at least R samples by up-rounding:

Ũ =




√
U2R

UV −ÛV̂




, Ṽ =

⌈
ŨV
U

⌉
. (5)

Our example in Fig. 1 (Û = 5, V̂ = 5, R = 39) results in a basis grid
of 7×7.
We then scale the Ũ × Ṽ basis grid to the U ×V sampling grid. In
case of a non-integer ratio of both grid resolutions, multiple per-
mutations are possible after rounding grid positions. Resulting grid
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Figure 3: The three basis grid permutations that satisfy the 4-fold
rotational symmetry for our example in Fig. 1 with N = 64, Ũ×Ṽ =
7× 7 and U ×V = 15× 15 (black: guidance-area samples, gray:
basis-grid samples). Varying grid spacings �∆U�= �∆V�= 2 and
�∆U�= �∆V�= 3 are indicated on the left and at the bottom.

spacings �∆U� and �∆U�, where ∆U = U−1
Ũ−1 , vary by a sample dis-

tance of 1 and their occurrences sum to Ũ −1. The spacings for the
V dimension are computed analogously. To satisfy our symmetry
constraint, we only pick basis grid permutations that satisfy the n-
fold rotational symmetry [Wey15], where n can be 4, 2 and 1. Thus,
we require a 4-fold rotational symmetry for the square configura-
tions (as in the example shown in Fig.1), and a 2-fold rotational
symmetry for non-square configurations. For our example in Fig. 1
(Ũ × Ṽ = 7 × 7 and U ×V = 15 × 15) three permutations exist
(cf. Fig. 3).
Finally, we search across all basis grids for the sampling mask with
a total of N samples that minimizes Ē by applying a stochastic
search algorithm (Scatter Search [MLG06]) which removes super-
fluous samples with n-fold rotational symmetry outside the guid-
ance area.
If the removal of samples breaks the n-fold rotational symmetry
constraint (i.e., if R not being a multiple of n), we consider the
next lower rotational symmetry case. For the example shown in
Fig.1, for instance, one remaining sample position that was to be
removed had neither 4-fold nor 2-fold rotational symmetric coun-
terparts. Therefore, 1-fold rotational rotational symmetry has to be
considered (i.e., no symmetry could be enforced).

2.3. Upsampling with Maximal Overlap
While the selected N samples in final mask are used for scene
recording, upsampling has to be applied afterwards to determine
all samples of the entire U ×V grid. For upsampling we rely on
a compressive sensing technique [MWBR13, SBB17] and use lo-
cal dictionaries that are directly recorded by the guidance area of
our sampling pattern [SBB15,SBB17]. The algorithm processes 4D
light-field patches of Ŝ× T̂ ×Û ×V̂ resolution with maximal over-
lap (i.e., a shift of one ray entry in both directional and spatial do-
mains). Note, that Û × V̂ equals the resolution of sampling tiles
described in Sec. 2.1.
Let qqq′ be a sub-sampled light-field patch (i.e., only containing
recorded ray entries). Our goal is to reconstruct an up-sampled (i.e.,
complete) light-field patch qqq = DDDααα, where DDD is the dictionary de-
rived from complete patches of the guidance region (see [SBB17]
for details) and ααα the sparse coefficients found by an ADMM
solver [FB15]:

minimize
ααα

∥∥qqq′−ΦΦΦDDDααα
∥∥2

2 , subject to ‖ααα‖1 ≤ τ . (6)

In Eqn. 6, ΦΦΦ is the corresponding sub-sampling matrix and τ the
sparsity threshold.
After reconstructing all overlapping patches, we compute the fi-
nal light field by averaging overlapping ray entries and avoiding

Scenes (N) Marwah ’13 Shi ’14 Schedl ’15 Kalantari ’16 Schedl ’17 Ours

Amethyst (64) 37.77dB - - 40.11dB 41.86dB 42.08dB
Lego (64) 28.79dB - - 32.87dB 35.63dB 37.26dB
Lego (48) - - - - 33.86dB 35.75dB
Cave (64) 26.51dB - - 30.99dB 38.57dB 41.08dB
Alley (64) 36.58dB - - 43.23dB 43.83dB 44.35dB

Amethyst (72) - 36.40dB - - 42.18dB 42.55dB
Tarot (72) - 30.19dB - - 37.81dB 39.20dB

Amethyst (69) - - 41.91dB - 42.07dB 42.43dB
Tarot (69) - - 34.09dB - 37.88dB 39.04dB
Tarot (48) - - - - 35.96dB 37.54dB
Cave (69) - - 29.96dB - 39.14dB 41.41dB
Alley (69) - - 41.36dB - 44.24dB 45.20dB

Table 1: Quantitative comparison of reconstruction quality (PSNR
of all reconstructed views compared to ground truth) for five scenes
and five related methods [MWBR13, SHD∗14, SBB15, KWR16,
SBB17]. Sampling grid size was 15×15 in all cases while the num-
ber of samples (N) varied. Note, that all methods support sampling
masks with arbitrary N. Cases for which the number of cameras
do not support the required masks are indicated with ’-’. Table 2
and Figure 4 display the applied sampling masks. Full datasets are
available at dsr.files.cg.jku.at.

extrapolation if possible, as explained in Sec. 2.1. Recorded ray
entries remain untouched.

3. Results and Discussion
The results presented in Tables 1,2, and in Figures 1,4 indicate
that our approach out-beats state-of-the art view-interpolation tech-
niques for light-fields and does not rely on depth reconstruction. It
greatly helps to reduce the complexity of camera arrays while pre-
serving the quality of light fields captured at high directional sam-
pling resolution.
The key to improved upsampling results lies in the application of
a guidance area to train an individual local dictionary for each
recorded scene, the ability to combine fully overlapping light-field
patches, and the possibility to determine optimized sampling masks
with feasible computational effort. The masks are computed one-
time for each camera configuration (N,U ,V ), and require 18 sec-
onds to 3 minutes on an 2.7GHz Intel i5 CPU. Upsampling is sig-
nificantly more time-consuming, due to the computational com-
plexity of Eqn. 6 (which is solved on the GPU). Reconstruction
time for one light field is 40 hours to 5 days on an Amazon Web
Services (AWS) GPU instance (p3.2xlarge: NVIDIA Tesla V100-
GPU; Intel Xeon CPU), and decreases linearly with the number of
instances (e.g., down to 4-12 hours with 10 instances). However,
the upsampling speed is currently the main limitation of our ap-
proach. Increasing it is our main task for future improvement.
In our experiments, we picked guidance areas that match the resolu-
tion used in state-of-the-art work [SBB17] for comparison. Finding
the optimal guidance resolution can easily be achieved by repeating
our approach for the small number of possible resolutions within

Schedl ’15 Schedl ’17 Ours

N 69 64 72 69 48 64 72 69 48

m
as

k

Ē 0.276 0.229 0.203 0.213 0.359 0.184 0.178 0.185 0.263

1.8

Ēp

0

Table 2: Comparing sampling mask qualities (Ēp) of approaches
that apply a guidance area [SBB15, SBB17] with ours.
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Figure 4: Reconstruction results with [MWBR13,SHD∗14,SBB15,SBB17] and with our approach, using 64, 72, 69, and 48 samples. Sampling
masks are shown at the top right of spatial close-ups. EPI close-ups and corresponding slices (red and green lines) are shown at the bottom.

the range of a given N (e.g., 3×3, 5×5, 7×7) and pick the mask
with the smallest Ē.
Interesting is to reason why (for the same N) our new sampling
masks are superior to similar ones determined with the help of user-
defined guidelines [SBB15] or with global dictionaries [SBB17],
and what general conclusions we can make with respect to ideal
patterns. With respect to Table 2, it can be seen, that all masks fol-
low a tendency towards regularity and symmetry. In [SBB15] and
in our approach this is due to applied constraints. But even for the
masks learned without constrains [SBB17] this tendency can be ob-
served (although in 45◦ rotated patterns). Our masks consider the
influence of interpolation and extrapolation in all overlapping tiles
within the mask pattern. This is the reason for gaps (depending in N
extending to entire rows and columns) close to the densely sampled
guidance area.
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