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Abstract
When trying to make the conjugate gradient (CG) method exploit GPU technology, this paper notes that the communication
between CPU and GPU to transfer the residual value and waiting for the CPU’s decision whether to continue further iterations
is a new source of delay that has been overlooked and turns out not negligible. By examining the residual decrease pattern in
log scale, this paper proposes so-called the Secant Lazy Residual Evaluation (Secant LRE) method to skip needless synchro-
nization. We experimented the method for a clothing simulator and found that the proposed method reduces the sync overhead
significantly, leading to 10∼60% performance gain.

CCS Concepts
•Computing methodologies → Massively parallel and high-performance simulations; Parallel algorithms; Physical simula-
tion; Graphics processors;

1. Introduction

This paper is related to making a marginal speed up when execut-
ing the conjugate gradient (CG) method on GPU. To show how the
proposed method applies to a real application, this paper will show-
case a clothing simulator, the framework of which is established in
Baraff and Witkin [BW98]. Implicit time integration of the govern-
ing equations describing the cloth movement is reduced to solving
a system of linear equations. Since the system matrix is sparse, an
iterative solver such as preconditioned conjugate gradient (PCG)
method shown in Figure 1 is used to solve the system [BW98]. In
implementing CG method to run on CPU + GPU, this paper pro-
poses a method to reduce the amount of CPU-GPU communication.

Since the major bottleneck of CG method is Sparse-matrix Vec-
tor Multiplication (SpMV), studies on speeding up CG has mostly
focused on optimizing SpMV by devising various data structures
(e.g., exploiting memory coalescing) for representing the sparse
system matrix [TTN∗13, WBS∗13]. This paper notes a new source
of delay in solving CG, which is not curable by accelerating the
algebraic operations.

In the CG method (or PCG without loss of generality in regard to
the problem this paper tries to solve), as diagrammed in Figure 1,
no communication between host and device is needed while exe-
cuting the inside of the while loop. After each round of iteration,
however, communication has to occur because CPU has to make
a decision whether to continue the next iteration or to stop based
on the residual value which is calculated on the GPU. (In recent
GPUs, it is possible to make the GPU make the decision for itself
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Figure 1: Flow of PCG when utilizing GPU.

via so-called the Dynamic Parallelism. In some GPUs, however,
self-decision making is not possible. The proposed method does
not depend on the style of CPU-GPU collaboration mechanism.)

The above CPU-GPU communication causes two types of la-
tency. The first one is called the residual report, which is the latency
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for transferring the residual value from device to host. The second
one is called the kickoff latency, which is the latency introduced in
launching a sequence of kernels when CPU finds further iterations
need to be carried out. We will call the union of the above, i.e.,
the residual report plus the kickoff latency collectively as the sync
overhead.

Sync overhead is not negligible. To measure the latency caused
by the sync overhead, we performed a simple swinging handker-
chief simulation (see Table 3 (d)) in two different resolutions and
summarized the results in Table 1. (The testing environment will
be detailed in Section 4.) Columns (a) and (b) show the total time
consumed for PCG method including and excluding the sync over-
head, respectively, after 128 frames of simulation. As Column (c)
shows, the overhead is more than 20%, although it depends on the
mesh size.

Table 1: Measurement of sync overhead.

# of vert
(a) With

sync overhead
(b) Without

sync overhead
(c) Ratio of

sync overhead
2.5k 27.71 sec 18.48 sec 33.30%
50k 274.19 sec 212.91 sec 22.35%

This paper introduces a new method to reduce sync overhead be-
tween host and device in the context of accelerating PCG method
utilizing GPU. The proposed method has no dependency on the
data structure used for storing the sparse matrix or the SpMV al-
gorithm. Pre-existing optimized data structures and algorithms can
make the speed-up by employing this method.

2. Related Work

There have been a number of studies to exploit GPU technology
which can be used for speeding up clothing simulation. At the early
stage, [Zel05] proposed a method to implement clothing simula-
tion utilizing the GPU based on Verlet integration. [BG08] intro-
duced various types of data structures for storing the sparse ma-
trix and proposed SpMV kernels that work with those data struc-
tures. [TTN∗13] noted that, for a structured quad mesh, if the ver-
tices are numbered carefully, non-zero blocks form 17 diagonal
lines. Based on that observation, they proposed a modified diagonal
format called the CDF (Compressed Diagonal Format), which was
optimized for GPU memory access pattern without creating padded
zero terms. [WBS∗13] proposed a new compressed sparse matrix
format called the BIN-CSR (BIN - Compressed Sparse Row) which
could exploit memory coalescing even for unstructured meshes.
Additionally, they noted that kernel call overhead can hamper the
performance and proposed that such an overhead can be reduced
by merging several kernels into one.

3. Lazy Residual Evalutation

Seeing that the sync overhead is not negligible, a question arises:
do we have to check the residual after every round of iteration?
This paper proposes that we can skip some part of the checks.
More specifically, it introduces the lazy residual evaluation (LRE)
technique. For the subsequent theoretical discussions, we define
nconverge as the number of iterations to escape from the PCG loop
(which is unknown when starting the PGC).
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Figure 2: Residual decrease pattern (in log-scale) in simulating
three sample garments (a)∼(c) of Table 3.

3.1. Static LRE

If we check the residual once in every k iterations, communica-
tion between host and device will be reduced from nconverge to
d nconverge

k e. When a constant k is used in the above, we will call it the
k-static LRE. In choosing the constant integer k, if k is too small,
the sync overhead reduction can be insignificant. If k is too large,
some amount of unnecessary iterations can occur beyond nconverge,
which will cancel the benefit of LRE. Therefore, a proper k need
to be chosen. In this paper, instead of the static LRE, we propose
so-called the dynamic LRE in which the number of unchecked it-
erations is dynamically determined on the fly.

3.2. Dynamic LRE

3.2.1. Phenomenological Analysis of Residual Decrease

If we can predict the residual decrease pattern (even approxi-
mately), more effective k could be chosen. When the PCG method
is executed, the iteration-residual plot typically takes the form
shown in Figure 2. This plot is extracted while simulating three
samples of clothing – blouse, one-piece dress, and pants (see Ta-
ble 3 (a)∼(c)) – which are shown in red, green, and blue, respec-
tively. For all three samples, the simulation was run for 128 frames
and Figure 2 shows how the PCG method converges, in which the x-
axis represents the PCG loop iteration number and the y-axis repre-
sents the residual value in log scale. To avoid excessive overlapping
in the plot, we randomly chose only 10 frames for each sample.

After making observations on the log-scale PCG convergence
pattern in a number of clothing samples (e.g. the ones in Figure 2),
we note that there are some common tendencies in the residual re-
duction:

• The residual decrease can be divided into two stages. In the first
stage, the residual decreases rapidly. After the first stage, it enters
into the second stage, in which the residual decrease is slower
and stable.

• The exact pattern or the length of the first stage is hard to predict.
However, for the second stage, if plotted in log scale, we find that
the curve shape generally follows approximately a straight line
with some noise.

• With a sensible ε, the PCG method does not end during the first
stage; The PCG loop escape happens in the second stage. Ac-
cording to all the experiments performed so far, the number n2
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Figure 3: Ratio of nconverge between two consecutive frames in the
simulation of three sample garments (a)∼(c) of Table 3.

of iterations in the second stage is larger than the number n1 of
iterations in the first stage.

Based on the above observations, this paper proposes two strategies
that can apply to the first and second stages, respectively.

3.2.2. Skipping the 1st Half

The phenomenological fact that PCG method does not finish in the
first stage implies that sync can be omitted altogether for the whole
duration of the first stage. More specifically, we propose that the
sync should be skipped for the first 0.5 * nconverge iterations. The
question now is how to predict nconverge. Once again, we use a phe-
nomenological fact.

Figure 3 shows the ratio nconverge,current
nconverge,prev

of nconverge between
two consecutive frames in the three clothing samples, where
nconverge,current and nconverge,prev are nconverge of the current and
previous frames, respectively. Disregarding the noise for the mo-
ment, the curve is horizontally flat at the height one. Excluding
the first frame, note that the ratio is bounded within [0.8, 1.3]. It
implies that nconverge,current can be approximated by nconverge,prev
since nconverge,current is larger than 0.5*nconverge,prev. Therefore we
can safely skip 0.5*nconverge,prev iterations in current frame. We call
it Skipping the 1st half. If the ratio never goes below 0.5, skipping
the first half will never bypass nconverge of the current frame. (Al-
though we show only three samples here, the ratio is larger than 0.5
even when all the experiments we have done so far are included.)
For the case of the first frame, which has no record for the previous
frame yet, we just use the Secant LRE method (presented in the
next section) without skipping the 1st half.

3.2.3. Secant LRE

We propose a dynamic LRE method called the Secant LRE which
is based on the Secant method (a well-known method for root-
finding). In the Secant LRE, the log of the residual value δi of the
i-th step is used as the function value and iteration number xi of
that step is used as the function argument as shown in Figure 4.
Then, the predicted number ki of iterations for which the sync can
be exempted is given by

ki =

⌈(
logε

2− logδi

) xi− xi−1
logδi− logδi−1

⌉
. (1)

Because the residual decrease pattern is not exactly a straight
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Figure 4: Use of the Secant method to predict the number of iter-
ations for which CPU-GPU sync can be omitted.

line and has some noise, there exists a possibility that ki given in
Equation 1 overshoots or undershoots the situation. For this reason,
we propose the clamped version of the Secant LRE, in which the
minimum and maximum step values Kmin and Kmax, respectively,
are used to clamp ki. More specifically, we use

ki = clamp
(

Kmin,Kmax,

⌈(
logε

2− logδi

) xi− xi−1
logδi− logδi−1

⌉)
,

(2)
where Kmin and Kmax are user-controlled parameters.

4. Results

This section reports experimental results and analyzes performance
enhancement due to LRE. The proposed method was implemented
with C++ and CUDA 9.0 and run on Intel core i7 3770K CPU
with 16GB RAM and Nvidia GTX titan X. The linear system
was formatted as block compressed sparse row (BCSR), and to
get the better performance we employed BSRMV algorithm (by-
block) from [EH16]. Dot product kernel was taken from [Nvi17]
with CUBLAS_POINTER_MODE_DEVICE option. We adopted
the second-order backward difference formula for building the lin-
ear system [CK02] and used block Jacobi preconditioner. The force
model is from [BW98]. Every kernel was programmed in single
precision. We set the Kmin and Kmax for clamping the Secant LRE
to 5 and 50, respectively, and ε to 10−6.

4.1. Analysis of Sync Reduction

We simulated four clothing samples in motion to measure the sync
count. Table 3 lists the number of vertices and the number of non-
zero 3× 3 blocks in the system matrix for each of the clothing
samples. Each sample was simulated with i) Original PCG solver,
ii) Secant LRE (SecLRE) and iii) Secant LRE after skipping 1st
half (SecLRE+SFH). Table 2 summarizes the result. Every sam-
ple was simulated for 128 frames, during which we accumulated
the number of iterations and the number of syncs. SecLRE method
significantly reduced the sync overhead, the 1st half skipping pol-
icy reducing only about additional 1 % point. As the total itera-
tion counts show, SecLRE and SecLRE+SFH could overshoot the
nconverge. However, the benefit from reducing synchronization over-
head clearly surpassed the loss due to the overshoot PCG iterations.
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Table 2: Comparison of sync overhead among different methods.

(a) (b) (c) (d)
Total

Iteation
# of

Syncs
Ratio

Total
Iteration

# of
Syncs

Ratio
Total

Iteration
# of

Syncs
Ratio

Total
Iteration

# of
Syncs

Ratio

Original 98,402 98,402 100% 67,940 67,940 100% 75,536 75,536 100% 45,634 45,634 100%
SecLRE 100,111 2,201 2.2% 69,106 1,591 2.3% 76,603 1,728 2.3% 46,891 1,048 2.2%

SecLRE+SFH 99,898 1,259 1.3% 69,321 932 1.3% 76,776 1,011 1.3% 47,138 580 1.2%

Table 3: Simulation samples and some statistics.

 (a)  (b)  (c)  (d)

(a) (b) (c) (d)
# of vertices 5,603 13,992 10,783 2,604
# of non-zero 71,423 181,082 135,903 32,472

4.2. Performance Gain in Various Mesh Resolutions

For the sample (d) in Table 3, we ran the simulation in four dif-
ferent mesh resolutions, i.e., 0.1k, 2.5k, 10k, 50k in the number
of vertices. Figure 5 shows how the performance gain of original,
SecLRE and SecLRE+SFH varies with those resolutions. SecLRE
method reduced the solver time conspicuously, producing 10∼60%
performance gain. The extra performance gain of SecLRE+SFH
from that of SecLRE was marginal.
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Figure 5: Performance gain (for the case of handkerchief) in var-
ious resolutions. From left to right, 0.1k, 2.5k, 10k, 50k in the num-
ber of vertices.

5. Conclusion

This paper proposed a new way to reduce the sync overhead when
solving the linear system with CPU and GPU. We noted that the
communication between CPU and GPU to transfer the residual
value and waiting for the CPU’s decision whether to continue
further iterations can be a source of delay that has been over-
looked. By analyzing the log-scale residual decrease pattern, we
proposed Lazy Residual Evaluation (LRE) method to skip unnec-
essary syncs.

We find that the Secant LRE is very effective. It produces

10∼60% performance gain. We also tested another version of LRE
based on linear regression on the 2nd half, but it was not clearly
superior to the Secant LRE.
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