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Abstract

Physics-based fluid simulation often produces unpredictable behavior that is difficult for artists to control. We present a new
method for art directing smoke animation using time-reversed simulation. Given a final fluid configuration, our method steps
backward in time generating a sequence that, when played forward, is visually similar to traditional forward simulations. This
allows artists to create simulations with fast turnaround times that match an exact art-directed shape at any timestep of the
simulation. We address a number of challenges associated with time-reversal including the problem of decreasing entropy.

CCS Concepts

eComputing methodologies — Physical simulation; Simulation by animation; eApplied computing — Media arts;

1. Introduction

Fluid simulation has become a well-established tool in visual ef-
fects and animation pipelines. It gives artists a reliable way to cre-
ate complex, photorealistic fluid motion for film and other media
without having to hand-craft every frame of the animation. While
fluid simulation has allowed artists to achieve tremendous amounts
of detail on enormous scales, it also restricts how much influence
they have on the shape and behavior of the final result.

Art direction of fluid simulation often demands that the simu-
lated fluid fill a very specific shape at some timestep in the mid-
dle of the simulation in order to create an appealing composition.
It is often critical to meet a director’s vision. However, this is a
very expensive, time-consuming process involving many iterations
of careful adjustments to the initial state.

Previous methods have attempted to address this problem by
manually placing control forces calculated from a set of user-
defined guides. These methods tend to either be very slow, or they
don’t exactly match the target shape.

Our work allows artists to achieve an exact, art-directed shape
at any desired timestep, as opposed to being restricted to the very
beginning. Our system can then solve both forward and backward
from that point. The most important visual moment of any fluid
simulation is usually towards the middle or end of the sequence
and not at the very beginning. This will allow artists to achieve the
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exact desired shape at the most meaningful point in the simulation,
without compromising natural fluid motion or simulation speed.

2. Related Work

The practical use of 3-dimensional fluid simulation for animation
and visual effects [Sta99] [FSJO1] has been tremendous. However,
their inherent unpredictability has motivated years of research in
efficient control techniques.

Much research has been done with the concept of smoke density
targets [TMPS03] [MTPS04] [PM17]. These approaches are com-
putationally expensive, requiring a small number of control forces
and coarse simulation grids. Fattal and Lischinski [FLO4] intro-
duced a much faster method by using a driving force term to hit
target shapes, and a smoke gathering term to prevent diffusion. The
downside of this method is that it does not exactly match the target
shape.

Other control techniques are built around the idea of using sim-
pler simulation methods to generate control particles, which are
then used to influence the fluid simulation [REN*04] [SS17].

The time-reversibility of the Euler equations as an accuracy
benchmark for fluid solvers has been explored with an energy-
preserving integration scheme [DOW] [MCP*09]. However, we
did not use these methods as we were able to achieve plausible
results with the modified MacCormack method described in Selle
et al. [SFK*08] with second order accuracy.

3. Time-Reversed Simulation
3.1. Overview

Our time-reversible simulator is an extension of the popular semi-
Lagrangian smoke simulator introduced by Stam [Sta99]. The tra-
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ditional forward simulator requires an initial state at time 79 and
advances each timestep, #;, according to:

fiy1 =i+ A (D

Where i is any given timestep between 0 and n. Our reverse simula-
tor requires an initial state at time #, and advances a given timestep,
t;, in the reverse direction by:

ti_1=t—At 2)

The result of this time-reversed process is intended to be presented
advancing forward in time. The fluid state at time #, can also be
passed into a forward simulator and the results of the separate sim-
ulations can be concatenated in sequence as a single, continuous
flow. The result will be presented as follows:

fo...ln...1f

Where 1y is the initial timestep, #, is the art directed timestep, and
t7 is the final timestep of the sequence. The sequence from #j to #n
is generated by our reverse simulator.

Algorithm 1 Time-Reversed Fluid Simulation Algorithm

1: fori=nto0Odo

2 External forces

3:  Self-attraction force (section 3.4)

4:  Backwards dissipation (section 3.5)

5:  Modified divergence projection (section 3.4.1)
6:  Advection
7: end for

3.2. “Initial” End State

Our simulator will accept a polygonal mesh as input for the fluid
state at time #,. This state is chosen by the artist and can be de-
fined at any timestep, », of the simulation, although from here on
we will refer to it as the “end” state. Twigg and James [TJO8] dis-
cuss a number of limitations for time-reversed simulation that are
caused by an end state that is not the result of forward simulation.
Their solution is to jitter the end state, which we do for fluids by
inputting the target shape as the initial state to the forward simula-
tor and running it for a small number of timesteps. The goal is to
let it run long enough to develop texture features, but not so long
that it significantly distorts the target shape. The result of this short
simulation is then used as the end state for the reverse simulation.

3.3. Reversibility Paradox
The incompressible Euler equations are time-reversible:

V-u=0 3)

ou

5 =
Duponcheel et al. [DOW] showed that this property is preserved in
fluid solvers that have an energy-preserving integration scheme and
accurate time-stepping. Such a solver can be made to step back-
wards in time by simply reversing the velocity field and running
the simulator as usual. Reversing a velocity field that is the result

—(u-V)u-— %Vp 4)

of several timesteps of a forward simulation and running the accu-
rate solver for the same number of timesteps will produce visually
plausible behavior, and, if it is accurate enough, can even recover
the initial state. However, this requires some assumptions about the
initial conditions of the simulator—namely, an end state that is the
result of a forward simulation. In our case, we will have no such
end state but define one based on the user’s input target shape as
described in section 3.2. Without such a state, the reverse simulator
does not follow the second law of thermodynamics, which states
that entropy must always increase. This becomes obvious when the
reverse simulation is played forward—disorder grows into order
and the motion feels unnatural. Thus, there is an incompatibility
between reversible dynamics and irreversible processes. We found
that the most useful explanation of the nature of this conflict is due
to “an explicitly asymmetric assumption about the way in which
real systems were formed in the first place” [Dav77]. Because we
are essentially reversing this assumption by starting from a user-
defined end state, we will need to introduce a constraint outside of
the dynamics to achieve visually plausible reversed behavior.

3.4. Self-Attraction Force

In order to mimic decreasing entropy, we force the fluid to become
less spread out over time. We use a self-attraction force similar to
Newtonian gravity.

Emim
Fo= =3~ 5)

We replace the gravitational constant G with a (generally much
larger) user-defined constant E that describes how marked the self-
attraction will be. Accurately calculating this force for each cell
requires O(h*) calculations where /: is the number of fluid cells.

. h
=Y

J=1

Em,-mj(rj 71’,’) (6)
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We can reduce it to O(h*log(h)) by approximating it using a
Barnes-Hut tree [BH86]. However, even with the approximation,
this step is still a computational bottleneck (see Table 1). We exper-
imented with setting a max traversal depth for the tree and found
that in most cases a depth of 1 is all that is needed. In this case, the
self-attraction force is reduced to a center of mass calculation R:

i Emimyora) (R - ri)
= R ?
Adding limited amounts of energy back into the system can ac-
tually improve the believability of the fluid flow. This is because,
in the forward direction, energy dissipates due to viscosity. In the
backward direction, introducing small amounts of energy can have
the effect of approximating viscosity.

This force alone will cause the fluid to contract as the reverse
simulation progresses. However, there is a limit to how much it can
compress due to the incompressibility constraint.
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Barnes-Hut Tree | Center of Mass
Bunny (Fig 1) 5.217 s/t 0.889 s/f
Eurographics (Fig 2) 16.412 s/f 8.017 s/f
Hand (Fig 3) 15.865 s/f 2.719 s/t

Table 1: Computing the gravitational force with a Barnes-Hut Tree
compared with using the center of mass of the object.

3.4.1. Modified Divergence Projection

Allowing the gas to compress has the positive side effect of re-
versing gaseous free expansion, which is the process by which gas
expands to fill its container. During free expansion, the density of
the gas decreases as it takes up more space. In reverse, we want
the density to increase as it takes up less space. We accomplish this
with the method introduced by Feldman et al. [FOA03] of enforc-
ing non zero divergence to modify fluid behavior. In their case they
enforce a positive divergence in order to cause rapid expansion for
explosions. In our case, we enforce a negative divergence which
will cause the fluid to contract. For traditional incompressible flu-
ids we force the velocity to be divergence free.

V-u=0 (3

This is done by solving a Poisson equation for a scalar pressure
field.

Vip=V-u )

uy=u;—Vp (10)

In order to allow the fluid to compress, we force the divergence of
the fluid velocity to be equal to the divergence of the self-attraction
force F, (equation 7).

V-u=V-F, (1
‘We solve by making the following change to equation 9.
Vp=V-u—V-F (12)

Modifying the divergence in this way allows the fluid to compress
at most to the extent defined by the magnitude of the self-attraction
force. This has the potential to hurt believability, as a very large
self-attraction force will cause the smoke to diminish rapidly and
compress into a singularity. However, we found that the force was
effective at small magnitudes, generally between 0 and 1. Figure 1
shows such a case.

3.5. Dissipation

In fluid simulation we often want to simulate dissipation, especially
when we are modeling steam or mist. We describe a process for
creating this effect in a time-reversed simulation. We simulate dis-
sipation in the forward process using the decay model:

Pr+1 = max(0,p; — kyAt) (13)

Where &, is the dissipation constant. For cells with nonzero density,
the reversal is trivial:

Pr—1 = Pr +kgAr 14
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Figure 1: An example of a time-reversed simulation without (top)
and with (bottom) entropy reduction. Both were simulated back-
wards in time, but here we present them forward in time (as an
audience will view them).

Reverse Forward
Bunny (Fig 1) 0.889 s/f 0.717 s/f
Eurographics (Fig 2) 8.017 s/t 6.98 s/f
Hand (Fig 3) 15.865 s/f 2.239 s/t

Table 2: Comparison of average simulation times for each of our
results in seconds per frame. The corresponding forward simula-
tions were set up with the final state of the reverse simulation as the
initial state.

However for cells with zero density there are an infinite number of
possible results. Given an empty cell at time #;, it could have any
density value in the range [0,k;A¢] at time ;. We need to be able
to choose a reasonable value based on context.

We set the initial density values outside the target shape based
on the following equation

po = —Bd; +any(i) 15)

where (i) is a noise function, ¢; is the level set value for cell i and
B and o are user-adjustable parameters. o defines how much noise
to add while  determines how quickly the shape of the fluid shrinks
due to dissipation. With o = 0, there will be no random variation
and density will dissipate uniformly in all directions. High values
of B cause the fluid to shrink rapidly while low values cause it to
shrink slowly.

4. Results and Conclusion

Figure 1 shows the results of a time-reversed simulation (presented
forward in time) of smoke forming the shape of a bunny with and
without the self-attraction force. As can be seen, entropy appears
to be decreasing in the wrong direction of time in the top sequence,
as the shape shrinks over forward time instead of diffusing out-
ward. Our self-attraction force improves this significantly. The bot-
tom sequence was simulated with the max traversal depth of the
Barnes-Hut tree set to 0, essentially only adding a center of mass
calculation (see timing data in Table 2).

Figure 2 shows an application of time-reversed dissipation. A
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Figure 2: An example of time-reversed dissipation. The smoke

gradually dissipates to form words.

Figure 3: A large scale example of a time-reversed simulation us-
ing our self-attraction force with the full Barnes-Hut Tree.

cloud of smoke gradually dissipates to form words. This example
was generated using the self-attraction force. The reverse dissipa-
tion parameters were o, = 0.6 and § = 0.125.

Figure 3 shows a large scale example using our self-attraction
force. In this case, the force was calculated using the full Barnes-
Hut tree, which increased computation time noticeably (see Table
2). Using the full tree improved the result for this broad, complex
shape.

We have described a time-reversed simulation method that pro-
duces visually plausible behavior. Our method has a number of ad-
vantages over existing techniques. With simulation times very close
to those of a contemporary forward simulator, it has much better
performance than optimal controllers such as [PM17]. It also has
the enormous benefit of being able to guarantee an exact match

to the target shape, which is a notable drawback of proportional-
derivative controllers such as [FL04]. However, this comes with the
trade off of being limited to exactly one keyframe. An interesting
area of future research would be to investigate how time reversed
simulation could be combined with these control methods to mini-
mize this drawback.
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