
EUROGRAPHICS 2004 / M. Alexa and E. Galin Short Presentations

Interactive Physically-based Animation System
for Dense Meshes

Ryo Kondo and Takashi Kanai

Keio University SFC, Fujisawa, Kanagawa, Japan

Abstract
In this paper we describe an interactive physically-based animation system for dense meshes. Our method extracts
a coarse mesh from an original mesh to make a tetrahedral mesh for the reduction of computational costs. For
computing reaction forces we precompute penetration depth values and gradients at mesh vertices by creating a
distance field. They are interpolated when collisions are detected and are used for the calculation of forces with a
penalty method. Our method can handle dense meshes with physically-based animation and collision response at
interactive frame rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

Physically-based animation is essential to produce realistic
scenes. An interactive animation system including collision
response is, however, still problematic for deformable ob-
jects because of the complexity of collision detection and the
computation of reaction forces. In this paper we provide a
unified framework and a simple solution to physically-based
animation for dense meshes.

Our basic idea is to use a coarse tetrahedral mesh to an-
imate a given dense mesh interactively. The computational
cost to solve linear dynamic equations is dramatically de-
creased and depends only on the number of elements of a
tetrahedral mesh, not the complexity of a given dense mesh.

Our approach also keeps high-resolution quality of ren-
dering. Before animation we create a relationship between a
tetrahedral mesh and a dense mesh. In each frame positions
of a dense mesh are updated by barycentric interpolation. As
a result a natural-looking animation can be established with
high quality rendering interactively.

Collision response is indispensable for realistic anima-
tion. After the collision detection we calculate reaction
forces directly from a tetrahedral mesh and reflect them
on the animation. We can integrate these methods into our
framework to animate scenes with several dense meshes in-
teractively.

The rest of the paper is organized as follows. Section 2

covers related work for physically-based animation and col-
lision detection. In Section 3 we describe our framework and
a post-process technique to recover the relationship between
a tetrahedral mesh and a given mesh. Section 4 details the se-
quences for handling collisions. Results and discussions are
shown in Section 5. In Section 6 we conclude and discuss
about future work.

2. Related work

Physically based modeling is one of the most challenging
research areas in computer graphics. In this section we focus
on deformable object modeling and describe related work.

Various methods have been developed to represent a de-
formable object. One of the most common techniques is
a finite element method [Bat82], which consider an object
as finite tetrahedral (or hexahedral) elements and discretize.
For vertices of these elements, we solve dynamic equation
and compute their displacements. In other way a boundary
element method [JP99, JP03], which requires discretization
only on boundary points, and a particle method [YSY01],
which represent a solid object as a cluster of particles, are
well-known approaches. In most of them an object is sub-
divided into smaller pieces. On the other hand, some ap-
proaches such as free-form deformation (FFD) [TS86] de-
form an object by its surrounded coarser object with para-
metric representation. Faloutsos et al. [FvdPT97] proposed
a combined method with FFD and physics.

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org


R. Kondo & T. Kanai / Interactive Physically-based Animation System for Dense Meshes

Figure 1: Overview of our animation framework

Stable real-time deformations [MDM∗02] is an interac-
tive approach based on linear finite element method. By ro-
tating stiffness matrices this approach provides both fast and
stable simulation. Capell et al. [CGC∗02] proposed a frame-
work for skeleton-driven deformations with adaptive FEM.
Hauser et al. [HSO03] extended a modal analysis approach
[PW89] for interactive physically-based animation to im-
prove the computational cost.

This paper describes a simple unified framework for
physically-based animation with dense meshes. We espe-
cially show details of using a coarse tetrahedral mesh for
deformations. In addition, we integrate collision detection
and reaction force computations for deformable objects.

3. Framework and mesh mapping

Figure 1 shows an overview of our framework. Our approach
consists of three phases: tetrahedral mesh generation, ani-
mation with collisions and update of a dense mesh. In this
section we explain the first and the third phase. The sec-
ond phase, methods for animation and collision detection,
are covered in the next section.

3.1. Tetrahedral mesh generation

We use [MDM∗02] for physically-based elastic deforma-
tion. Note that our framework can also be used for other
types of FEM algorithms. In [MDM∗02], a tetrahedral mesh
is needed for the deformation. To keep the implementation
simple we generate an intermediate mesh, a coarse surface
mesh, and create a tetrahedral mesh from this surface mesh.
Since these processes are independent from our framework,
external programs can be helpful. We use a Garland’s mesh
simplification algorithm [GH97] to generate a coarse surface
mesh. This allows users to control the numbers of polygons
of a coarse mesh and to apply feature-preserving mesh sim-

plification. Usually, an initial dense surface mesh is coars-
ened to less than a thousand polygon.

We next create a tetrahedral mesh from a coarse sur-
face mesh. A public tetrahedral mesh generation software,
Netgen [Sch97], is used for this process. The number of
tetrahedral elements is adjustable and can be decreased by
several hundreds.

3.2. A relationship between two meshes

As explained in the previous subsection we can obtain a
coarse tetrahedral mesh from a given dense mesh. However,
the mesh details are removed. A relationship between these
two meshes is used to restore the quality of a given mesh.

We make correspondences between vertices of a given
dense mesh and elements of a tetrahedral mesh. Each ver-
tex of an original mesh should belong to an element of the
tetrahedral mesh. Once correspondences are determined new
positions of vertices of a dense mesh can be updated using
barycentric interpolation.

A concrete approach is as follows. Firstly, we perform an
inside-outside test for each vertex of a given mesh against
all the tetrahedral elements. If a vertex lies in a tetrahedral
element, it belongs to this element.

For the vertices that are outside of all the tetrahedral el-
ements, we next determine their corresponding tetrahedron.
For each of such vertices we choose a nearest face which
constitutes the surface of a tetrahedral mesh. Then a tetra-
hedral element in which a face is included is determined as
a corresponding tetrahedron. After these processes each ver-
tex of a given mesh has it’s corresponding tetrahedron and
its barycentric coordinate respect to the element (see also
Section 4.2).

4. Collision handling

In this section we describe the process for handling col-
lisions. By combining the following two methods we can
provide a simple solution for interactive computation of the
collision response. One is deformed distance fields method
[FL01], which precomputes penetration depth values and
gradients inside the mesh. Another one is spatial hashing
method [THM∗03], which can detect collisions between
tetrahedral elements and vertices of other tetrahedral ele-
ments.

4.1. Deformed distance fields

We use a penalty method for collision response. To compute
the force a penetration depth value and a gradient at a colli-
sion point is required. This is a major problem for collisions
especially in deformable objects. For each collision point it
is difficult to find a minimal path to the surface and integrate

c© The Eurographics Association 2004.



R. Kondo & T. Kanai / Interactive Physically-based Animation System for Dense Meshes

its length interactively because positions of the surface may
change in each frame.

Deformed distance fields provide a simple solution for
this problem. It creates distance fields inside the object and
computes a penetration depth value and a gradient at an ar-
bitrary point by interpolation. This process is performed as
a pre-process. When a collision point is detected the depth
values are interpolated.

4.2. Spatial hashing

For simple and efficient collision detection we use a spa-
tial hashing method, which maps a discretized 3D space to
a 1D indices. Firstly, we define a uniform grid on 3D space
and a hash table by using this grid. All the tetrahedron mesh
vertices are stored in this table. We next find neighboring
vertices that are involved in other tetrahedral elements by
tracing all the grid cells covered by such tetrahedrons. When
vertices are stored in each cell, barycentric coordinates rela-
tive to this tetrahedron are computed for intersection tests.

A barycentric coordinate b = (b0,b1,b2)
T of a vertex p at

position x can be computed by

b = A−1(x−xt0),

A = [xt1 −xt0 ,xt2 −xt0 ,xt3 −xt0 ], (1)

where xt0 ...xt3 are four vertices positions of a tetrahedron. A
vertex p lies in the tetrahedron if b0 ≥ 0,b1 ≥ 0,b2 ≥ 0 and
b0 +b1 +b2 ≤ 1.

4.3. Reaction force

Penetration depth values and gradients at the collision points
are computed by barycentric interpolation as described
above. In this subsection we show the actual computation
of reaction forces.

For all the tetrahedral mesh vertices we precompute the
penetration values and gradients at their positions. Let’s as-
sume that the collision test finds a penetrating vertex p in
the other tetrahedron t. A depth value and a gradient vector,
d and g, are computed by barycentric interpolation:

b′ = (1−b0 −b1 −b2,b0,b1,b2)
T
,

d = (dt0 ,dt1 ,dt2 ,dt3)b
′
,

g = [gt0 ,gt1 ,gt2 ,gt3 ]b
′
,

where dt0...t3 are pre-computed penetration depth values at
the tetrahedron vertices.

We should consider, however, that the gradient vectors
gt0...t3 are followed to the current orientation of the tetrahe-
dral element. We compute a rotation matrix from a pair of
three vectors in a tetrahedron. One of a pair is vectors in the
current state (A in Equation (1)), the other is in the initial
state (A0 as calculated in (1)). A rotation matrix is defined
as R̃ which is an orthogonalized matrix of R = A−1

0 ·A (see

Scene A Scene B Scene C

Tetrahedrons 6902 1812 883

Vertices 2532 792 358

Polys 132728 158792 19996

Fps 9-10 14-15 47-48

Table 1: Statistical results of performance in our system

details in [MDM∗02]). We then rotate the gradient vector by
using these matrices.

Let a precomputed gradient vector of a mesh vertex be
g0 . We rotate g0 by the rotation matrices of tetrahedrons
Rt1 ...Rtn which include the vertex and a gradient vector g
in the next step is defined by a normalized vector of the sum
of their rotated vectors.

g
sum

=
n

∑
i=1

Rti g0
,

g =
g

sum

|g
sum

|
.

By this means gt0...t3 are recomputed from precomputed vec-
tors g0

t0...t3 . We finally compute reaction forces by a penalty
method. A force vector f at a penetrating vertex p is ex-
pressed as follows:

f = a ·d ·g,

where a denotes a user-defined penalty coefficient.

5. Results and discussion

We test our algorithm for several scenes on a PC environ-
ment with Pentium 4 3.2GHz and GeForce FX 5950 (Table
1). Performance depends on the number of iterations of im-
plicit integration, therefore we perform with a static num-
ber of iterations for evaluation relative to the complexity of
meshes.

The FEM solution is not accurate whereas we can obtain
enough speeds and realistic rendering for an interactive ani-
mation. Figure 2 shows four horses fall and collide with each
other. In another example we represent a scene with throw-
ing tori to characters. (Figure 3). From our experience sev-
eral hundreds of tetrahedral elements for each object provide
a proper balance in terms of computational costs and visual
appearance. Our method can handle a scene which consists
of up to several hundreds thousands of polygons.

6. Conclusion and future work

In this paper, we have proposed an interactive physically-
based animation system for dense meshes. We have also pro-
vided a solution for collision response.

c© The Eurographics Association 2004.



R. Kondo & T. Kanai / Interactive Physically-based Animation System for Dense Meshes

Figure 2: Scene B: Falling horses

One future direction is a skeleton-driven animation with
collisions. While we use uniform elasticity models for de-
formations, most of creatures have bones and their motions
are skeleton-based. In the same way most of physical inter-
actions are firstly applied on muscles and then internal bones
are moved according to the deformation of such muscles. It
would help to create realistic character animations.

Figure 3: Scene A: A scene with throwing tori to characters

References

[Bat82] BATHE K.-J.: Finite Element Procedures in Engineer-
ing. Prentice-Hall, 1982. 1

[CGC∗02] CAPELL S., GREEN S., CURLESS B., DUCHAMP T.,
POPOVIĆ Z.: A multiresolution framework for dy-
namic deformations. In Proc. ACM SIGGRAPH Sym-
posium on Computer Animation SCA 2002 (2002),
ACM Press, New York, pp. 41–47. 2

[FL01] FISHER S., LIN M. C.: Deformed distance fields
for simulation of non-penetrating flexible bodies. In
Computer Animation and Simulation 2001 (2001),
Springer-Verlag, pp. 99–111. 2

[FvdPT97] FALOUTSOS P., VAN DE PANNE M., TERZOPOULOS

D.: Dynamic free-form deformations for animation
synthesis. In IEEE Transactions on Visualization and
Computer Graphics (July 1997), vol. 3, IEEE Press,
pp. 201–214. 1

[GH97] GARLAND M., HECKBERT P. S.: Surface simpli-
fication using quadric error metrics. In Proc. SIG-
GRAPH 97 (1997), ACM Press/Addison-Wesley Pub-
lishing Co., pp. 209–216. 2

[HSO03] HAUSER K. K., SHEN C., O’BRIEN J. F.: Interactive
deformations using modal analysis with constraints. In
Proceedings of Graphics Interface 2003 (June 2003),
A K Peters, pp. 247–256. 2

[JP99] JAMES D. L., PAI D. K.: Artdefo - accurate real time
deformable objects. In Proc. ACM SIGGRAPH: Com-
puter Graphics (1999), pp. 65–72. 1

[JP03] JAMES D. L., PAI D. K.: Multiresolution green’s
function methods for interactive simulation of large-
scale elastostatic objects. In ACM Transactions on
Graphics (2003), vol. 22, pp. 47–82. 1

[MDM∗02] MÜLLER M., DORSEY J., MCMILLAN L., JAGNOW

R., CUTLER B.: Stable real-time deformations. In
Proc. ACM SIGGRAPH Symposium on Computer An-
imation SCA 2002 (2002), ACM Press, New York,
pp. 49–54. 2, 3

[PW89] PENTLAND A., WILLIAMS J.: Good vibrations:
Modal dynamics for graphics and animation. In Proc.
SIGGRAPH 89 (July 1989), ACM Press, New York,
pp. 215–222. 2

[Sch97] SCHOBERL J.: Netgen - an advancing front 2D/3D-
mesh generator based on abstract rules. In Compu-
tations in Visualization and Science (1997), vol. 1,
pp. 41–52. 2

[THM∗03] TESCHNER M., HEIDELBERGER B., MÜLLER M.,
POMERANETS D., GROSS M.: Optimized spatial
hashing for collision detection of deformable objects.
In Proc. Vision, Modeling, Visualization VMV’03
(2003), Munich, Germany, pp. 47–54. 2

[TS86] T.W.SEDERBERG, S.R.PARRY: Free-form deforma-
tion of solid geometric models. In Proc. ACM SIG-
GRAPH: Computer Graphics (Aug 1986), vol. 25,
ACM Press, New York, pp. 23–26. 1

[YSY01] YOSHITAKA C., SEIICHI K., YOSHIAKI O.: A par-
ticle method for elastic and visco-plastic structures
and fluid-structure interactions. In Computational Me-
chanics (2001), vol. 27, pp. 97–106. 1

c© The Eurographics Association 2004.


