
EUROGRAPHICS 2004 / M. Alexa and E. Galin Short Presentations

Realtime Isosurface Extraction with Graphics Hardware

Frank Reck, Carsten Dachsbacher, Roberto Grosso, Günther Greiner, Marc Stamminger

{Frank.Reck,Carsten.Dachsbacher,Roberto.Grosso,Guenther.Greiner,Marc.Stamminger}@cs.fau.de
Friedrich Alexander Universität Erlangen-Nürnberg, Germany

Computer Graphics Group

Abstract
In this paper we introduce a method for the display of isosurfaces extracted from unstructured tetrahedral grids.
Our algorithm completely runs on the graphics hardware. The tetrahedra are streamed into a vertex program,
which extracts the surface for the given isovalue and immediately renders it. The triangles are not stored explicitly
but are computed during rendering time, so the user can modify the isovalue with immediate feedback. If the
tetrahedra entirely fit into video memory, we achieve a throughput of more than nine million tetrahedra per second.
Our performance can be further improved by using a hybrid method which pre-selects tetrahedra containing
the isovalue. We compare our approach with a pure CPU based implementation which achieves about half the
performance of our hardware accelerated method.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling

1. Introduction

In computational science and engineering, unstructured 3D
scalar data sets are a typical result of finte element simula-
tions. The scalar values are computed and stored at the ver-
tices of cells that partition the computational domain. The
aim of scientific visualization is to transform such three or
more dimensional data sets into pictures or movies. Many
different methods for this problem exist. Beside the pro-
jected tetrahedra algorithm suggested by Shirley and Tuch-
man [ST88] the calculation of isosurfaces is another com-
monly used method. The computation of isosurfaces on the
graphic hardware has been an important topic of research
since many years. Westermann [WE98] proposed a multi-
pass method based on the blending operation supported by
OpenGL. A draw back of this method is that Phong shading
is not possible. Röttger [RKE00] has developed a method for
computing isosurfaces completely based on the projection of
tetrahedra and pre-integrated volume rendering. These tech-
niques are complex and actually intended for volume render-
ing purposes. Thus, in this work we restrict to a much more
simpler method.

We present a new method for the extraction of isosur-

faces from unstructured 3D scalar fields defined on tetrahe-
dral meshes (for an overview see [BP99]). An isosurface is
the set of points with a common scalar value (isovalue). An
isosurface patch within a tetrahedron can be either empty, a
triangle, or a quadrilateral. In total we have to differentiate
between 24 = 16 cases. Taking advantage of symmetry and
rotations, these 16 cases can be reduced to the 3 cases shown
in Fig. 1. The isosurface for the 3 cases can be described by
zero, one, or two triangles.

In Section 2 we show that that the isosurface computation
can be carried out completely on the graphics hardware. Ide-
ally, the entire tetrahedral mesh is stored in graphics mem-
ory. Then an expensive transfer of the isosurface representa-
tion from main memory to the GPU is not necessary, even
if the user modifies the isovalue. For the cases that the grid
does not fit into video memory, we use an interval tree data
structure to reduce the necessary data transfer to a small
amount.

The entire calculation is performed by a vertex program
[LKM01]. Tetrahedra are fed into the vertex program as ver-
tices, the out coming vertices form the isosurface patch. Ver-
tex programs cannot generate or delete vertices, so in or-

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

Reck, Dachsbacher, Grosso, Greiner, Stamminger / Realtime Isosurface Extraction

der to obtain the maximum of four possible output vertices
we need to send four vertices into the vertex stage for every
tetrahedron. Every vertex needs to contain the entire tetrahe-
dron information.

2. The Algorithm

Our goal is to employ graphics hardware for the isosurfaces
computation on tetrahedral grids. For each tetrahedron the
edges that intersect the isosurface are needed. First, all ver-
tices of the tetrahedron are classified to have either a higher
(+) or a lower (−) scalar value as the isovalue. An edge
with different classification at the end points intersects the
isosurface; either none, three or four edges can have inter-
sections. For example the classification −+−− has inter-
secting edges 12, 23, and 24. Table 1 shows all 16 possible
cases and the corresponding intersecting edges. Symmetric
cases where + and − are swapped are grouped into one line
since the intersected edges are identical.

class. class. intersecting edges # tri.

++++ −−−− - 0

+++− −−−+ 14 24 34 1
++−+ −−+− 13 23 34 1
+−++ −+−− 12 23 24 1
+−−− −+++ 12 13 14 1

++−− −−++ 13 14 23 24 2
+−−+ −++− 12 13 23 24 2
+−+− −+−+ 12 14 23 34 2

Table 1: The 16 possible cases of isosurface extraction.

For each element, the result can be empty, one triangle, or
two triangles sharing one edge, as shown in Figure 1. The
empty result is obtained for the cases ++++ and −−−−,
one triangle appears if three edges are intersected, and two
triangles if four edges are intersected. The number of result-
ing triangles is shown in the last column of Table 1.

Now ideally, a vertex program would do the classification,
make a lookup into Table 1 and output zero vertices, three
vertices that form a triangle, or four vertices forming two
triangles with a common edge as shown in Fig. 1. But since
a vertex program cannot generate multiple output vertices
for a single input vertex, we have to adapt to the worst case
and send four input vertices into the pipeline for every tetra-
hedron. As output, four vertices vi are generated, which are
meshed as two triangles sharing one edge. The case that only
one or zero triangles are generated is handled by outputting
degenerate triangles with zero area, which are discarded by
the rasterizer. This approach is illustrated in Fig. 1. For con-
venience the shader code is also given in an Addendum. Ta-
ble 2 shows the output generated by our vertex program. In

V1=V2 =V3=V4
V1

V2

V3

V2
V4

V1

V3

V2

V3=V4 V3

V2

no insocontour one resulting

triangle

two resulting

triangles

Figure 1: The three different situations who a tetrahedron
can be intersected by the isosurface and the resulting trian-
gulations.

this table, edge i is the edge that is intersected with the iso-
surface by input vertex i to obtain output vertex vi. A “0”
means to output an arbitrary constant point without intersec-
tion computation.

class. class. edge 1 edge 2 edge 3 edge 4

++++ −−−− 0 0 0 0

+++− −−−+ 24 14 24 34
++−+ −−+− 13 13 23 34
+−++ −+−− 12 24 23 24
+−−− −+++ 12 14 13 13

++−− −−++ 13 14 23 24
+−−+ −++− 12 13 23 24
+−+− −+−+ 12 14 23 34

Table 2: The edges that are intersected with the isosurface
by our vertex program for all 16 possible cases.

If we consider the case −+−− again, we see that the
four output vertices are obtained by intersecting edges 12,
24, 23, and 24 with the isosurface. The table is generated
such that the four output vertices can be meshed as a short
triangle strip of length four to obtain the desired result. For
the previous example, this means that we obtain a triangle
from edges 12, 24, and 23. The second triangle with edges
24, 23, and 24 has the first vertex repeated. Thus the resulting
triangle has size zero.

Our vertex program has to perform three steps. First, the
tetrahedron must be classified. Then the program performs
a lookup into Table 2, indexed by the classification pattern
and the identifier i. This delivers the edge which is to be
intersected by the isosurface. The resulting intersection point
is the output of the vertex program. The input vertices are
stored in a vertex array, and rendered as indexed face set,
where the indices are chosen so that the output stream is
meshed as triangle strips of length four. The vertex cache of
current graphics boards then avoids the double computation
of the shared vertices.

c© The Eurographics Association 2004.

Reck, Dachsbacher, Grosso, Greiner, Stamminger / Realtime Isosurface Extraction

Since we cannot share information between the four pro-
cessed vertices of a tetrahedron, every input vertex must
carry the entire tetrahedron information plus the unique
identifier i ∈ {1,2,3,4}. Therefore memory requirements
are quadrupled. However, this redundance is for purely tech-
nical reasons. For future graphics hardware, solutions can be
foreseen that allow to get rid of this redundancy, e.g. when
vertex programs get access to textures or if textures can be
bound as vertex arrays. For the latter experimental imple-
mentations already exist.

Using the simple table lookup version as described above,
we need a table of size 128 for 16 cases and 4 edges with
2 endpoints each. However, first generation vertex program
(vp 1.0) hardware only supports at most 96 constants. We are
quite flexible in the ordering of the generated points. We ex-
ploit this property to describe an alternative implementation
that does not require such a large table, but is only slightly
slower.

Depending on i, the vertex program checks three edges of
the tetrahedron for an intersection. These edges are shown in
Table 3. If i = 0, we first look for an intersection on edge 12.
In this case, the intersection is computed and output. Other-
wise, edge 13 is tested the same way. If yet no intersection is
found, edge 24 is tested. If none of these edges is intersected
the entire tetrahedron does not contain an isosurface patch.
Then we output vertex (0,0,0,0) at each stage to generate
an empty patch.

As a result Table 3 produces the same output Table 2,
however with a significantly smaller table size.

i edge test 1 edge test 2 edge test 3

1 12 13 24
2 14 13 24
3 23 24 13
4 34 24 13

Table 3: Edge traverse order for input vertices i.

For the computation of the intersections we need to send
the entire tetrahedral information with every input vertex i.
This is the vertex positions of the tetrahedron and their scalar
values. For shading the normal vector is also needed at each
vertex. Altogether, this sums up to 144 bytes per vertex (in-
cluding identifier i, and four additionally swizzeled scalar
values to allow further optimization of the vertex shader
code).

3. Hybrid CPU/GPU Rendering

The performance of the method can be considerably im-
proved, if those tetrahedra that are cut by isosurface are
pre-selected by the CPU. For this purpose the interval tree
method [CMM∗97] was implemented.

Due to hardware restrictions, the memory requirements
are high, so that the entire data set may not fit into video
memory. If the entire data has to be transfered to the GPU
for each frame, we measured an approximate performance
drop of 10-20. However, we can easily combine our method
with an interval tree and select those vertices that have to be
transferred to the GPU.

4. Results and Conclusion

We tested our implementation on an Intel Pentium 4 with
2.4 GHz using DirectX 9. For the measurements four differ-
ent data sets have been used: elec1 (19549 tetrahedra), elec2
(142131), valve (35756) and Bluntfin (224874).

The memory consumption is 4×144 bytes per tetrahedron
for 4 corner positions, 4 corner normals, and 4 scalar values.
The data set is preferably stored in the video memory of the
graphics board. Table 4 shows the achieved throughput in
millions of tetrahedra in this optimal case. If the data set is
stored in main memory instead, and is accessed by the GPU
via the AGP bus, processing speed is dramatically reduced
by a factor of 10 to 20. Fig. 3 and Fig. 2 show different data
sets rendered with our method.

GPU data set diffuse per pixel
lighting lighting

nVidia GeForce elec1 7.22 6.70
Quadro FX 3000 elec2 6.39 6.33
256MB valve 7.50 5.68

Bluntfin 6.41 6.37

nVidia GeForce elec1 7.66 6.70
FX 5800 Ultra elec2 9.92 9.38
128MB valve 8.48 7.54

Bluntfin 0.61 -

Table 4: Million tetrahedra processed per second by the
GPU. Performance drop in the last column is due to the fact
that the Bluntfin data set does not fit into 128 MB of video
memory.

In Table 5 we compare our algorithm with a CPU based
implementation that uses an interval tree for the selection
of the intersected tetrahedra, computes the isosurface trian-
gles on the CPU and sends them to the graphic hardware
for rendering. If the tetrahedral grid fits into video memory,
our algorithm computes isosurfaces almost twice as fast as
the CPU based implementation. Although the GPU version
iterates over all cells, where most of them do not intersect
the isosurface we are already faster. If we use the hybrid
CPU/GPU algorithm that only iterates over the intersect-
ing tetrahedra an additional speedup of approximately 7 is
achieved. If the isovalue is changed, and new nodes of the in-
terval tree have to be transfered to video memory, frame rate

c© The Eurographics Association 2004.

Reck, Dachsbacher, Grosso, Greiner, Stamminger / Realtime Isosurface Extraction

Figure 2: The strength of
the magnetic field around
the coil (blue part) is repre-
sented by the scalar values
of this data set (red).

Figure 3: The Bluntfin data
sets hold the result of a flow
simulation. The isosurface
shows points with the same
pressure.

decreases slightly. A video card with 128 MB can hold over
200.000 tetrahedra. With interval trees data sets can have up
to 600.000 tetrahedra. Data sets with more tetrahedra have
to be transfered over the AGP bus which results in decreased
rendering performance. In the near future we expect that this
issue is solved by the increased bandwidth of PCI express.
The issue of quadrupling each vertex will be solved by the
superbuffer extension. Therefore we predict the same perfor-
mance gain of 700% also for large data sets in comaprison
to a pure CPU based isosurface extraction algorithm.

version fps

CPU + interval tree 150
GPU brute force 246
GPU + interval tree 1166

Table 5: Comparison of the pure CPU, GPU variation and
an hybrid version of the algorithm in frames per second for
the elec1 data set. The interval tree approximately discarded
70 % of all tetrahedra.

References

[BP99] BAJAJ C., PASCUCCI V.: Data Visualization
Technique, vol. 6 of Trends in Software. John
Wiley and Son, 1999, ch. Accelerated isocon-
touring of scalar fields.

[CMM∗97] CIGNONI P., MARINO P., MONTANI C.,
PUPPO E., SCOPIGNO R.: Speeding Up Iso-
surface Extraction Using Interval Trees. IEEE
Transactions on Visualization and Computer
Graphics 3, 2 (1997), 158–170.

[LKM01] LINDHOLM E., KLIGARD M. J., MORETON

H.: A user-programmable vertex engine. In
Proceedings of the 28th annual conference on
Computer graphics and interactive techniques
(2001), ACM Press, pp. 149–158.

[RKE00] RÖTTGER S., KRAUS M., ERTL T.: Hardware-
accelerated volume and isosurface rendering
based on cell-projection. In Proceedings of the
conference on Visualization ’00 (2000), IEEE
Computer Society Press, pp. 109–116.

[ST88] SHIRLEY P., TUCHMAN A.: A Polygonal Ap-
proximation to Direct Scalar Volume Render-
ing. San Diego Workshop on Volume Visual-
ization, Computer Graphics 24, 5 (December
1988), 63–70.

[WE98] WESTERMANN R., ERTL T.: Efficiently using
graphics hardware in volume rendering appli-
cations. In Proceedings of the 25th annual con-
ference on Computer graphics and interactive
techniques (1998), ACM Press, pp. 169–177.

Addendum: Vertex Shader

fragment myvs(vertex IN) {
fragment OUT;
float4 pos, F, E, idx, edge1, edge2;
float iso1, iso2, frac;

// finding the intersected edges
F = IN.isoVswizzle - isoValue.xxxx;
E = (F.yxxw * F.wzyw) < 0.0f;

// determine edgeTable offset
idx = dot(E, float3(1, 2, 4));
idx = jumpTable[idx.x];
idx.x += IN.coord1.w;

// receiving the mask
edge1 = edgeTable[idx.x - 2];
edge2 = edgeTable[idx.x - 1];

// ratio
iso1 = dot(edge1, IN.isoV);
iso2 = dot(edge2, IN.isoV);
frac = (isoValue-iso1)/(iso2-iso1);

// interpolate the weights
E = lerp(edge1, edge2, frac);

// interpolate position
pos = IN.coord1 * E.x + IN.coord2 * E.y +

IN.coord3 * E.z + IN.coord4 * E.w;
// interpolate normal vector
OUT.COL0 = IN.nrml1.xyz * E.x + IN.nrml2.xyz * E.y +

IN.nrml3.xyz * E.z + IN.nrml4.xyz * E.w;

// correct offset factor
pos *= idx.wwww;

// transform position
OUT.HPOS = mul(worldViewProj, pos);
return OUT;

}

c© The Eurographics Association 2004.

