
EUROGRAPHICS 2004 / M. Alexa and E. Galin Short Presentations

Tone Mapping in VR Environments

A. Hausner and M. Stamminger

Computer Graphics Group, University of Erlangen-Nuremberg, Germany

Abstract
Tone mapping is the process of mapping high dynamic range images to the low dynamic range of current displays.
So far, tone mapping research was focused on static images, but with powerful graphics hardware available today,
real time tone mapping becomes possible. In this paper we describe tone mapping within a VR environment. The
tone mapping operator utilizes information about the user’s line of sight obtained by a tracking system. Adaptation
is optimized for the current view point and costly image operations are restricted to the central view field. Since
all computations are completely performed by graphics hardware, we achieve interactive frame rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-
niques

1. Introduction and Previous Work

Recent improvements in graphics hardware allow to shift
more and more complex operations to the graphics proces-
sor. The fixed pipeline stages are replaced by programmable
shader units, so that general computations can be done on
the graphics card. In latest graphics hardware all these units
and data paths can work with floating-point precision which
allows us to deal with high dynamic range data (HDR)
[DM97].

Current display devices can only display a low dynamic
range of intensities, whereas real world environments typ-
ically exhibit a much higher dynamic range. Tone map-
pers map light intensities of high dynamic range to the dis-
playable intensities, with the goal to maintain as much con-
trast and detail as possible. There are many different tone
mapping operators available so far. Generally, they can be
classified as global and local operators. Global operators
gather information from all pixels of the image and apply a
single mapping function to all pixels. Due to their global na-
ture, these operators cannot always preserve local contrast.
Local operators operate on a per-pixel basis and apply a lo-
cally varying mapping. For a detailed discussion please refer
to [KDP02], which give an extensive survey of available tone
mapping operators.

The problem of tone mapping also appears in interactive
rendering, and in particular also in virtual reality (VR) envi-
ronments. In this paper we describe a variant of Reinhard’s

tone mapping operator [ERF02], which is tailored for VR
environments. Usually, in a VR environment, the position
of the observer is followed by a tracking system. The knowl-
edge of the viewer’s position is used to adapt the virtual cam-
era, so that the user can move around virtual objects just by
moving the head.

In this paper, we use this additional information from the
tracking system to optimize the tone mapper. Since we know
the user’s head position and view direction, we can deter-
mine at which part of the screen the user looks. Because in
VR environments we usually have large screens, the focused
regions only covers part of the screen. We then can concen-
trate the tone mapping computations to this focused region,
which saves time and optimizes the result for the user’s cur-
rent line of sight.

We have choosen as basis Reinhard’s operator for several
reasons. It is an excellent operator developed from a practi-
cal approach producing very good results. The operator com-
bines a simple global function and a complex local func-
tion and is therefore well suited for a GPU implementation.
Goodnight at al. [NGH03] have shown, that this operator can
be implemented on graphics hardware for the rendering of
high dynamic range images.

2. Review of Reinhard’s Operator

The idea of Reinhard’s operator is based on practical photog-
raphy where photographers use the zone system to determine

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

A. Hausner & M. Stamminger / Tone Mapping in VR Environments

whether all details they capture are preserved on the final
print. To avoid loss of detail in local regions, Reinhard ex-
tends his simple operator with a technique that is quite sim-
ilar to the printing technique dodging-and-burning [Ada83].

Given is the world luminance Lw(x,y) of each pixel (x,y)
in the scene. First, the log-average luminance Lw is com-
puted:

Lw = exp
(

1
N ∑ log(δ+Lw(x,y))

)

(1)

where N is the number of pixels in the image and δ a small
safety parameter for black pixels. Lw is then used to scale the
luminance Lw to the middle grey zone:

L(x,y) =
a

Lw
Lw(x,y) (2)

where L(x,y) is the scaled luminance and a is the key-value
to indicate whether an image is subjectively light ("high
key") or dark ("low key"). The standard value is 0.18 for
normal-key scenes, but the user can vary a down to 0.09 and
0.045 or up to 0.36, 0.72 or 1.0 if the scene makes it neces-
sary.

Next, a simple global operator is applied to obtain the dis-
play luminance:

Ld(x,y) =
L(x,y)

1+L(x,y)
(3)

brings all luminances to a displayable range of [0 : 1].

This simple operator produces good results, but in bright
regions detail is lost. To counteract this effect, Reinhard in-
troduces automatic dodging-and-burning, a technique that
has quite the same effect as the same-named printing tech-
nique: On some portions of the image more light is added,
on others light is kept back. Dodging-and-burning is applied
to regions where no sudden contrast changes occur.

The following center-surround function gives a measure-
ment of local contrast changes at a certain scale. This func-
tion is defined by

CS(x,y,si) =
V (x,y,si)−V (x,y,si+1)

2φa/s2
i +V (x,y,si)

(4)

where Vi is a gaussian convolution at a certain scale si:

V (x,y,si) = L(x,y)⊗R(x,y,si) (5)

R(x,y,si) =
1

πs2
i

exp

(

−
x2 + y2

s2
i

)

(6)

Now for every pixel, the size of the surrounding region
without significant contrast changes is computed. To this
end, blurred images with increasing filter size are generated,
starting with s0 = 0.35 and si+1 = 1.6× si. For every pixel
(x,y), we store the last filter size sloc(x,y), for which the local
contrast is below a threshold, i.e. |CS(x,y,si)| < ε, ε = 0.05.
φ is a sharpening parameter that enhances edges and is set

to 8 by default. Reinhard observed best results with these
values and our tests approved this. By increasing the sharp-
ening parameter to higher values than eight we saw no visual
difference. Decreasing φ dampens the effect of local sharp-
ening.

Finally, the tone mapping operator of Equ. 3 is applied,
but the scaled luminance in the denominator is replaced by
V (x,y,sloc(x,y)):

Ld(x,y) =
L(x,y)

1+V (x,y,sloc(x,y))
(7)

which serves as a local dodging-and-burning operator for
each pixel in the image.

3. A Tone Mapping Operator for VR

Our operator requires an HDR texture as input, so we first
render the scene offscreen to a floating point P-Buffer. Dur-
ing rendering, we immediately compute the logarithmic lu-
minance logL = log(0.27R+0.67G+0.06B) of all pixels by
a fragment program and also store these values in the result
image.

The following computations only work on these lumi-
nance values, so we only need one-channel P-Buffers. With
nVidia’s extensions, a floating point buffer with one channel
is only available for the R-Channel, so we have to store the
luminance in the R-channel and swizzle the original RGB to
GBA.

3.1. Global Scaling

We first compute the log-average luminance from Equ. 1.
The log luminance values have been computed during ren-
dering, so they only need to be averaged. Computing the av-
erage value of an image can be done by sequentially down-
sampling the image with a fragment program to an image
size of one pixel. The same effect can be achieved faster us-
ing automatic mipmap generation of modern graphics hard-
ware.

Although automatic mipmapping – introduced by the ex-
tension GL_GENERATE_MIPMAP_SGIS – is performed
by the hardware it is still a time-consuming computation.
For this reason we use a smaller P-Buffer of size 1282 in this
step.

Because mipmapping is not supported for floating point
textures we scale the log luminance down to the range [0 : 1]
and use a standard pbuffer with 8 bits precision, which is suf-
ficient for our purposes. After mipmapping we read back the
single pixel of the coarsest mipmap level into system mem-
ory and perform another render pass that scales the lumi-
nance according to Equ. 2.

3.2. Local Scaling

In a VR environment usually head position and orientation
are tracked. With this information we can determine the

c© The Eurographics Association 2004.

A. Hausner & M. Stamminger / Tone Mapping in VR Environments

screen position of the viewer’s line of sight. We assume that
the viewer’s attention is concentrated to a region around that
view point, and we call this region the focus region. Because
the screens in typical VR environments are relatively large
(with a field of view of 90 degrees or more), the focus region
only covers a fraction of the original image.

Because the viewer mainly perceives the luminances in
the focus region, we compute a local average luminance
value for the focus region. From this we can obtain a local
scaling factor as in Equ. 2. Instead of scaling the entire im-
age with a single global factor, we scale the image with the
local scaling factor in the focus region, and the global scal-
ing factor outside the focus region with a smooth transition
zone.

By this, we achieve a better representation of the relevant
focus region. When the user looks into a dark (bright) region,
this region is brightened (darkened) and detail becomes vis-
ible again.

3.3. Local Sharpening

We also apply the local sharpening operator of Reinhard.
For the computation of Equ. 7, we must determine sloc(x,y)
for every pixel and store the corresponding color value
V (x,y,sloc(x,y)) in a local luminance image.

We initialize this image with L(x,y). Then, we generate
filtered versions of the input image with increasing filter size
si. The computation of the gaussian convolution is separated
to a horizontal and vertical filter pass. This separation re-
quires two operations with a 1D-filter, but is still much faster
than a single 2D-filter operation.

Whenever the local contrast for a pixel (x,y) grows above
a threshold, i.e. |CS(x,y,si)| > ε, we store the last available
filtered luminance value V (x,y,si−1) in the local luminance
image. Thus, each iteration requires three rendering passes,
two for the filtering and one for the threshold test.

The local sharpening is very time consuming and too slow
for interactive applications. To tune this operation we make
use of the knowledge where the viewer is looking at. We
concentrate the local sharpening computation to the focus
region by building a pyramid: In the first two iterations we
compute the local sharpening only in a quad of size 5122,
the third and fourth iteration in a quad of 2562 and for every
following iteration a quad with size 1282, where each quad
is centered around the focus regions.

With this approach a viewer sees his focus region with
maximum detail. On current graphics boards, this optimiza-
tion results in interactive frame rates at the cost of some de-
tails which are outside the viewer’s viewing angle.

3.4. Stereo Rendering

Stereo viewing requires rendering the scene twice which
halves the frame rate. However, in practice we can reuse the

log-average luminance of Equ. 1 computed for one eye. Thus
we avoid each mipmapping operation for global and local
scaling. Our experiments have proven that the log-average
luminance for the left and right eye differ only marginal.

4. Results

In our tests we were using an nVidia FX-series graphics card,
that supports a standard floating point precision of 32 bits per
channel. All benchmarks were done using an AMD Athlon
XP 3200 with 512 MB RAM and a GeForce FX 5900 card.
We have implemented both a Linux and Windows version of
the application in OpenGL. The pixel buffers the tonemapper
uses had a size of 10242.

fps Windows Linux

Global Scaling 37 22

Local Scaling 25 20

Local Sharpening 25 17

Local Scaling / Local Sharpening 19 15

Table 1: Achieved frames rates rendering Paul Debevec’s
memorial church (the image was resized to 10242). The win-
dows version profits from its render-to-texture capability.

Table 4 shows our benchmark results rendering Paul De-
bevec’s memorial church in a resolution of 10242. The Win-
dows version profits from its render-to-texture support and is
much faster than the Linux version which requires glCopy-
TexSubImage() instructions. Local sharpening is done in up
to 7 iterations. We have found that further iterations do not
increase the image quality much more, and are not worth the
additional computation time. Doing even more iterations re-
quires a gaussian filter with radius of at least 15 pixels (9th
iteration). That means 31 texture lookups or 8 render passes
(each 4 horizontally and vertically respectively).

Fig. 1 shows the tone mapping results of Paul Debevec’s
memorial church. Depending on the line of sight, details in
the focus region become visible (left and center image). Lo-
cal sharpening increases the contrast further (right image).

Screenshots of an interactive walkthrough session of a
temple scene are shown in Fig. 2. If the viewer looks in-
side the temple, the local scaling and sharpening make de-
tails visible.

5. Conclusion

In this paper we have shown how Reinhard’s tone mapping
operator can be integrated to a VR environment. Our opera-
tor uses knowledge about the user’s line of sight to optimize
the result and the computation time.

Recent announcements of nVidia’s GeForce FX 6800 card
say that this card is now capable of computing all graphics

c© The Eurographics Association 2004.

A. Hausner & M. Stamminger / Tone Mapping in VR Environments

with local scaling and local sharpening with local scaling with local scaling and local sharpening

Figure 1: An HDR image displayed with our tone mapper. The user’s line of sight is marked by a red dot. Note how the tone
mapper brightens the dark region in the left image and dims the cupola in the center image. In the right image the contrast in
the cupola is further increased by local sharpening.

Figure 2: Snapshots of a walkthrough of a 3D temple scene with line of sight marked in red. If the viewer looks inside the
temple, details in the temple become visible (scene provided by “Foundation of the Hellenic World”).

operations with floating point precision and no clamping to
[0:1] between the pipeline stages. We can then render 3D
scenes with features like blending etc.

A possible improvements of the operator would be to im-
plement a time-dependent model. With our operator so far it
isn’t possible to have a glare effect when looking suddenly
from very dark regions to very bright regions. Our operator
scales the luminance down at once. An adaption model that
scales down the luminance down by time could mimic the
behaviour of the human eyes.

References

[Ada83] ADAMS A.: The Print. Little, Brown and Com-
pany, 1983. 2

[DM97] DEBEVEC P. E., MALIK J.: Recovering high
dynamic range radiance maps from photographs.

Computer Graphics Proceedings, Annual Confer-
ence Series (Aug. 1997), pages 369–378. (Pro-
ceedings of SIGGRAPH 1997). 1

[ERF02] ERIK REINHARD MICHAEL STARK P. S., FER-
WERDA J.: Photographic tone reproduction for
digital images. ACM Transactions on Graphics
21, 3 (July 2002), C219–C231. (Proceedings of
SIGGRAPH 2002). 1

[KDP02] KATE DEVLIN ALAN CHAMBERS A. W., PUR-
GATHOFER W.: Star: Tone reproduction and
physically based spectral rendering. Proceedings
of Eurographics (Sept. 2002), pages 101–123. 1

[NGH03] NOLAN GOODNIGHT RUI WANG C. W.,
HUMPHREYS G.: Interactive time-dependent
tone mapping using programmable graphics
hardware. Eurographics Symposium on Render-
ing (Sept. 2003), pages 1–13. 1

c© The Eurographics Association 2004.

