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Abstract 
This paper presents a method for rendering a dynamic virtual environment using IBMR at interactive 
rates.  Most IBMR methods are designed for use with static scenes and are awkward when extended tem-
porally due to excessive memory requirements or user intervention.  In our method, spatial and temporal 
redundancy are removed from sets of input images to reduce the time and space needed to render an in-
teractive dynamic scene.  A pre-processing step is initially applied to remove the redundancy; rendering 
is performed any time afterward by the explorer.  The rendering process is most similar to Layered Depth 
Images (LDI), while image storage is most similar to video encoding technology.  The benefits of our 
method include the preservation of pixels sampled at higher rates without requiring additional data struc-
tures, and the freedom of movement for the user throughout the scene. 

Categories and Subject Descriptors [according to ACM CCS]: I.3.3 [Computer Graphics]: Viewing Algo-
rithms

1.  Introduction 

Providing walk-through capabilities within a temporally 
dynamic virtual environment, or animation, is an 
important topic in computer graphics.   Most noticeably, 
this capability is available in the entertainment industry 
through virtual reality rooms and computer games.  
However, these applications are often limited in detail 
due to the difficulty of modeling complex scenes.  Thus, 
when high levels of detail are provided, the dynamic 
portions of a scene are not. Many times freedom of 
movement is also limited or non-existent.  Great benefits 
can therefore be gained by combining realistic detail 
with complete freedom of movement within an 
interactive dynamic 3D virtual environment.   

 
Image-Based Modeling and Rendering (IBMR) 

techniques provide a means for creating environments 
with high levels of detail that are otherwise extremely 
time-consuming or even impossible to render or create 
by hand.  In this paper, we propose an algorithm for 
providing interactive navigation through high-quality 
animations by extending existing IBMR methods.  The 
original motivation for this work stemmed from a desire 
to walk through a high-quality animation of a molecular 
crystallization process that could not be rendered in real-
time.  We were especially interested in preserving the 
most highly sampled pixels in each image to facilitate 
zooming in on areas of interest while maintaining the 
scientific accuracy of the scene. 

Our method uses a sequence of images obtained 
from a set of cameras and renders the dynamic 
environment in interactive time.  A user can view the 
action of the scene from any vantage point.   The level 
of detail is high, since the primitives used for display are 
images.    The algorithm takes advantage of spatial and 
temporal redundancy within the set of images to 
improve render rates and lessen storage requirements.  
Render quality is highest since pixels sampled at higher 
rates are preserved in each image  

2.  Previous Work 

IBMR methods, techniques and areas of research can be 
classified according to the following:   

 
• warping methods  
• scene reconstruction methods 
• algebraic methods 
• plenoptic methods  
• point methods 
• dynamic methods 
 

These groups, while not a formally recognized set of 
classification, provide a convenient means of grouping 
past techniques and placing our work in proper context.   

Warping methods attempt to create novel views or 
transitions between views from a set of reference images 

http://www.eg.org
http://diglib.eg.org
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by translating pixels from the source image plane to 
locations on the target image plane.  A significant por-
tion of early literature in IBMR can be classified in this 
category including: texture mapping5,15 QuickTime   
VR8, morphing4,37,38, view morphing31 and view interpo-
lation7,30.  These methods increase the detail of a scene 
or provide novel views at relatively quick speeds but 
severely limit the user’s freedom of movement. Also, 
some of these methods require user-directed correspon-
dence matching which prevents the algorithms from 
extending temporally since the time required to mark the 
many input images is often excessive. 

Scene reconstruction methods recreate the 3D 
geometry of the scene by estimating the geometry of 
underlying scene objects represented in the input 
images.  Some examples include:  the 8-Point Method24, 
automatic 3D reconstruction of the scene13, the 
Michelangelo Project22, volumetric methods9, meshes16, 
and hybrid techniques11, among others. Despite the high 
level of detail that reconstruction methods provide, they 
are cumbersome when extended temporally since the 
underlying geometries need to reflect temporal changes 
in the scene. Also, rendering speed is dependent on the 
complexity of the model, which may not guarantee an 
interactive rendering rate. 

Algebraic methods seek to create valid novel views 
of a 3D scene from a set of reference images by using 
the geometric or algebraic relationships between the 
cameras, the view planes of each reference image, and 
the virtual camera.  Some examples include methods 
introduced by Laveau and Fargus18, Shashua34 and 
Avidan and Shashua3.  Algebraic methods are limited 
primarily in their extendibility.  Particularly, they 
require user intervention for correspondence marking or 
are otherwise limited by camera placement or the 
number of input images that can be used. 

Point methods seek to reconstruct a novel view of a 
scene where points are the only object primitive avail-
able.  These points are then rendered as is without con-
version to geometric surfaces or correspondence match-
ing.  Levoy20 initially proposed point rendering, and 
techniques that borrow from it include volume render-
ing36, delta trees10, LDIs32,28, LDI trees6, and post-
rendering 3D warping26. Our research is most closely 
related to the point methods, in particular LDIs and LDI 
trees, since we take advantage of the fast rendering 
speed that point methods offer.  However, these methods 
suffer from various disadvantages. LDIs in particular 
lose the highly sampled pixels in the input images. LDI 
trees attempt to overcome this deficiency but require the 
construction of an octree, which becomes cumbersome 
when extended temporally. 

Plenoptic methods are based on the plenoptic func-
tion, formally introduced by Adelson and Bergen1.   The 
Plenoptic Function describes all visible light within a 
scene and is represented, at most, by seven parameters.   

These methods include plenoptic modeling27, light-field 
rendering21,17, lumigraph14, multiple-center-of-projection 
images29, concentric mosaics33, and plenoptic stitching2.  
These methods allow a wide range of freedom of 
movement but are difficult to extend temporally, and 
require extreme amounts of memory.    

Some recent dynamic methods include light fields 
for dynamic rendering23, dynamic view morphing25, and 
spatio-temporal view interpolation35. While these 
methods relate in their attempts to use IBMR to render 
dynamic scenes, they differ in their approaches.  The 
extension of the light field and view morphing do not 
entirely overcome the limitations of their static 
ancestors.  Spatio-temporal view interpolation differs 
from this research in that it seeks to interpolate the 
dynamics of the scene over time and is not concerned 
with rendering at interactive rates. 

 

3.  Algorithm Summary 

Our algorithm consists of three principle stages, as 
shown in Figure 1:  image collection, pre-processing and 
rendering.  In the first stage, image collection, we use 
images of synthetic scenes accompanied with depth and 
normal information easily obtained from rendering en-
gines. Using images taken of a real scene is possible, but 

• Image Collection Step (performed only once) 
o build a highly detailed synthetic scene 
o capture various animations of the scene from 

different viewpoints 
�  obtain pixel color & depth information 
�  obtain surface normals per pixel (not neces-

sary but desired) 
 

• Pre-Processing Step (performed only once) 
o estimate normals (if not provided) 
o remove  temporal redundancy 

�  separate pixels into background images 
�  separate pixels into foreground images 

o remove spatial redundancy of foreground and 
background images 

�  register the images with one another 
�  remove redundant pixels with lower sam-

pling rates 
o efficiently store the foreground and back-

ground images  
 

• Rendering Step (performed as often as desired) 
o load the pre-processed images 
o register and reconstruct the novel views at in-

teractive rates using point method rendering 

 

Figure 1:  Algorithm for image-based rendering in a 
dynamic environment. 
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requires further processing to determine per-pixel depth, 
such as algebraic and normal estimation methods.  Such 
techniques for determining pixel depths and normals 
from real images are restrictive, however, and do not 
always provide accurate results. Fortunately, we can 
compute these values directly since our target applica-
tion is for high-quality synthetic images of scenes that 
are impossible to render traditionally at non-interactive 
rates. 

The second stage is a pre-processing step that greatly 
improves the final rendering time.  Many of the input 
images contain redundant pixels that represent the same 
point in space.  We need not render redundant pixels and 
consequently, we gain significant improvement in render 
time by ignoring them.  The pre-processing stage 
removes these redundant pixels from the input images, 
thus reducing the memory requirements and the image 
size.  Pixels with higher sampling rates are kept while 
redundant pixels with lower sampling rates are 
discarded.  The images are efficiently stored to take 
advantage of their smaller size.   

Finally, the rendering stage, performed as often as 
desired, generates novel views of the scene from any 
vantage point the user desires.  The algorithm renders 
quickly and is capable of sustaining interactive frame 
rates.  We discuss each of these steps further in the 
following subsections. 

 

3.1  Image Collection 

In the first step, image collection, we collect the 
reference images used to create the environment.  
During scene generation, we place any number of 
cameras in static locations throughout a synthetic scene 
to capture the animation from multiple viewpoints. Each 
camera produces its own image sequence, which will be 
used to create the virtual environment.  Figure 2 shows 
an example of a setup that could be used to create image 
sequences for our algorithm. 

 

Figure 2:  A scene containing 9 cameras each viewing 
the same scene from different vantage points. The image 
sequences obtained from each are used to create the 
virtual environment.  

3.2  Pre-Processing 

The pre-processing step consists of normal estimation (if 
required), the removal of temporal and spatial redun-
dancy, and efficient image storage. 

First, normals are an integral component of the pre-
processing calculations and must be provided or 
estimated for each input image.  If we use computer-
generated images as our input primitives, we can easily 
compute normals during the standard rendering process, 
save them as accompanying data to the image, and use 
these exact normals during the pre-processing stage. If, 
however, normals are not provided with the input 
images, normal estimation can be performed with any 
normal estimation technique, such as those most 
commonly used with volume rendering. 

Second, exploiting redundant information across an 
image set allows us to extract repetitive information, 
thus reducing the render time as well as the memory 
footprint.  Redundancy occurs when pixels in two or 
more different images represent the same location in 
world coordinate space. Two pixels can be spatially 
redundant (they map to the same location in space) or 
temporally redundant (they remain constant over a 
period of time).  

Removing spatially redundant pixels from an image 
set is not new.  With LDIs, spatial redundancy is 
removed from an image set when two source pixels from 
different source images map to the same destination 
pixel and depth.  In this case, one of the pixels is 
discarded.  However, LDIs do not preserve sampling 
density of more highly sampled pixels since such pixels 
map to the same locations and are discarded.  These 
pixels appear to be spatially redundant when, in fact, 
they are not.  LDI trees attempt to preserve these aliased 
pixels but require the construction of an octree, which 
becomes cumbersome when extended to dynamic 
scenes.    

Removing spatial redundancy requires the registra-
tion of all images into a common reference frame where 
pixels are compared to determine if they represent the 
same point on a surface in the scene.  If two pixels are 
determined to be spatially redundant, one of the pixels is 
discarded.  We perform this registration by mapping 
every image in the same time frame to every other image 
in that time frame and keeping those pixels that have the 
highest sampling rate.  Figure 3 demonstrates how two 
different cameras can sample the same area of a surface 
at different rates. 

We use the following equation to indicate the camera 
that samples a pixel at a higher rate: 
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where  
 
c1V, c2V  normalized view vector for c1 and c2 
c1D, c2D  normalized look vector for  c1 and c2 
d1 ,d2  the depth of the pixel from  c1 and c2 
xN  the surface normal vector of point x 
 
if r = 1  both pixels are sampled equally 
if r < 1 c1 samples the pixel more highly 
if r > 1  c2 samples the pixel more highly 
 

Exploiting temporal redundancy has also been ex-
plored previously.   Other branches of computer graph-
ics, such as ray tracing and radiosity, use temporal re-
dundancy (coherence) to decrease render times across 
frames12.  Additionally, the MPEG encoding standard 
exploits redundancy to decrease the bit rate of its 
streaming video19.   

Once a pixel is determined to be temporally redun-
dant across a set of frames, it is separated from the im-
ages and preserved in a separate set of background im-
ages.  Once all pixels have been processed, those re-
maining in the source images constitute the dynamic 
portion of the scene, or in other words, the foreground.   
These foreground and background image sets are not 
representative of the actual background and foreground 
of the underlying scene (although usually the static por-
tion of the scene consists of the actual background); they 
represent two-dimensional image sets where the back-
ground consists of pixels that remain constant over time 
and the foreground consists of pixels that are different 
from one frame to the next.   This process is shown in 
Figure 4. 

Finally, efficient image storage is the last stage of 
the pre-processing stage.  To reduce the size of the 
images, we tile each one and ignore tiles where all pixels 
were redundant and removed.  We use  simple run-
length encoding to reduce the image size further and 
store the images in a customized IFF file format. 

 

3.3 Rendering 

The rendering stage consists of two steps:  loading the 
pre-processed images from memory, and re-projecting 
the pixels in the images of the current time step to the 
view plane of the novel view.  We use the following 
equations to perform the projection of the pixel from 2D 
image coordinates to world coordinates: 

 

Figure 4: The first image (left) is an original image from one camera in the scene where the yellow ball is the only dy-
namic object.  The second image shows pixels that have been removed due to spatial redundancy with pixels from a dif-
ferent camera in the same time frame, which were sampled more highly in that image. Significantly more pixels will be 
removed once comparisons with all other images in the time frame have been performed.   The third image represents the 
foreground image created from extracting the dynamic portions of the scene.  The final image is a background image 
created by extracting the static portions of the scene. The algorithm creates one background image per camera, and N 
foreground images per camera, where N is the number of frames in the animation. 

 

Figure 3:  The surface of object A is better sampled by 
camera c2 near point y, and by the camera c1 at point x. 
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where 
u, v row column index of the current pixel 
w, h width and height of the image plane 
rw, rh resolution of the image in pixels 
fl focal length 
a aspect ratio:  w / h 
d pixel’s depth value 
x, y, z 3D eye space coordinates 
P 3D eye space coordinate vector 

 

Once in world coordinates, the pixels are projected 
onto the novel view plane using standard matrix multi-
plication.  We perform a coarse blending within a 4-
pixel region to reduce the appearance of holes. These 
calculations can be performed incrementally to speed 
render time. 

We render the background images once and “paint” 
the foreground over top for each consecutive time step 
(frame).  Only when the user moves vantage points do 

we re-render the background to reflect the changes in 
viewpoint.   Since a significant number of pixels are 
removed from the foreground images, we have substan-
tially fewer pixels to render, thus allowing for signifi-
cant speedup. 

 

4.  Results 

Testing was conducted on a Gateway AMD Athlon 1.1 
GHz machine with 640Mb of RAM, a 7500 RPM IDE 
Maxtor hard drive, and an NVIDIA GeForce4 Ti4400 
AGP graphics card, running Red Hat Linux 7.3. 

Our first test case, shown in the top row of Figure 5, 
consisted of an image set from nine cameras viewing a 
dynamic scene.  At least one of the cameras was placed 
to obtain a highly sampled view of a scene object.  Each 
camera produced 60 anti-aliased frame images.  We 
used Alias|Wavefront Maya 4.5 for modeling and ren-
dering. Surface normals of the scene objects were not 
provided. 

Our second test case consisted of an image set from 
four cameras viewing a dynamic scene and is shown in 
the bottom row of Figure 5.  One of the cameras was 
placed to obtain a highly sampled view.  Each camera 
produced 300 frames. Normals were provided with each 
image. 

 

 

Figure 5:  The top and bottom left-most images represent original views of two dynamic scenes.  The top scene was con-
structed using Maya and the bottom using a customized ray tracer.  The center images represent a novel view of each 
scene from a vantage point not available in any of the source images.  The right-most images represent novel views and 
show that highly sampled pixels are not lost.  Note the high-quality detail of pixels in regions of original high sampling, 
while surrounding regions of lower sampling produce poorer image quality. Overall, image quality of the top set of novel 
views is not as good as that of the bottom images since the normals were estimated and the input images were anti-
aliased.  Normals computed for the bottom images, which were not anti-aliased, provided more accurate reconstruction. 
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In each test case, users were free to explore the envi-
ronment from any vantage point. No data structures, 
other than the foreground and background images them-
selves, were needed to aid in rendering.  As a result, we 
achieved an 85% reduction in memory requirements, 
compared to that of storing the original images, and on 
average, an interactive render rate of 19 frames per sec-
ond.  The render rate slows, however, when the user 
changes vantage points since the background must be 
repainted. (The background generally contains most of 
the pixels in the scene and takes a bit longer to render.) 

Note that we also do not adequately fill all holes that 
appear in the scene.  In general, the rendering remains 
high in quality as long as the user’s sampling rate is 
lower than that represented in the input images. 

Overall, these results are quite promising, and 
although performance is related to the amount of spatial 
and temporal redundancy inherent in the scene, this 
technique will work across a broad range of animations. 

5.   Conclusion 

This research provides two primary contributions. First, 
it presents an IBMR method that provides a walk-
through environment of a high-quality dynamic scene in 
interactive time, where the user is not limited in freedom 
of movement.    Second, it uses a unique method for 
storing pixels from a set of images in a medium 
conducive to speed and low memory, while preserving 
more highly sampled pixels without the creation of any 
new data structures.    

This research is useful in a wide variety of applica-
tions. One example is scientific visualization, where 
scientists could observe changes in their experiments 
with high detail from any vantage point.   Another ex-
ample is virtual showcases of real estate properties 
where the viewer, unlike with currently available appli-
cations, could look at any portion of a piece of property.   
Virtual reality and possibly gaming applications could 
also benefit from the level of detail obtained from such a 
system. 

While the algorithm has several benefits, some 
limitations exist as well.  Performance is dependent on 
the number of pixels rendered, and the more cameras 
viewing the scene, the more time spent rendering.   The 
amount of redundancy in a scene also affects the number 
of pixels.  While no limitations exist within the 
algorithm as to the placement of cameras, placement 
does affect the performance of the final rendering since 
it contributes to the amount of spatial redundancy 
available.   Cameras whose viewing frustums do not 
overlap cannot benefit from the removal of spatial 
redundancy and temporal redundancy can also be 
similarly limited. 

Another limitation, common to many IBMR meth-
ods, is that the novel view lacks view-dependent light-
ing.  Reflective and translucent materials cannot be 
properly displayed since the algorithm knows nothing of 
the underlying scene—it merely projects pixels and does 
not alter pixel colors for proper view-dependent lighting.   
The scene, therefore, is required to consist primarily of 
diffuse objects. 

This work seems to be part of the natural step that 
IBMR is taking: from that of creating virtual static 
scenes to virtual dynamic ones.   We hope this work can 
provide a building block in future research using IBMR 
for virtual dynamic scenes. 
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