
EUROGRAPHICS 2003 / M. Chover, H. Hagen and D. Tost Short Presentations

© The Eurographics Association 2003.

Interactive Dynamic Environments
Using Image-Based Modeling and Rendering

Timothy A. Davis and Stephen P. Ficklin

Department of Computer Science, Clemson University, Clemson, SC, U.S.A.

Abstract
This paper presents a method for rendering a dynamic virtual environment using IBMR at interactive
rates. Most IBMR methods are designed for use with static scenes and are awkward when extended tem-
porally due to excessive memory requirements or user intervention. In our method, spatial and temporal
redundancy are removed from sets of input images to reduce the time and space needed to render an in-
teractive dynamic scene. A pre-processing step is initially applied to remove the redundancy; rendering
is performed any time afterward by the explorer. The rendering process is most similar to Layered Depth
Images (LDI), while image storage is most similar to video encoding technology. The benefits of our
method include the preservation of pixels sampled at higher rates without requiring additional data struc-
tures, and the freedom of movement for the user throughout the scene.

Categories and Subject Descriptors [according to ACM CCS]: I.3.3 [Computer Graphics]: Viewing Algo-
rithms

1. Introduction

Providing walk-through capabilities within a temporally
dynamic virtual environment, or animation, is an
important topic in computer graphics. Most noticeably,
this capability is available in the entertainment industry
through virtual reality rooms and computer games.
However, these applications are often limited in detail
due to the difficulty of modeling complex scenes. Thus,
when high levels of detail are provided, the dynamic
portions of a scene are not. Many times freedom of
movement is also limited or non-existent. Great benefits
can therefore be gained by combining realistic detail
with complete freedom of movement within an
interactive dynamic 3D virtual environment.

Image-Based Modeling and Rendering (IBMR)

techniques provide a means for creating environments
with high levels of detail that are otherwise extremely
time-consuming or even impossible to render or create
by hand. In this paper, we propose an algorithm for
providing interactive navigation through high-quality
animations by extending existing IBMR methods. The
original motivation for this work stemmed from a desire
to walk through a high-quality animation of a molecular
crystallization process that could not be rendered in real-
time. We were especially interested in preserving the
most highly sampled pixels in each image to facilitate
zooming in on areas of interest while maintaining the
scientific accuracy of the scene.

Our method uses a sequence of images obtained
from a set of cameras and renders the dynamic
environment in interactive time. A user can view the
action of the scene from any vantage point. The level
of detail is high, since the primitives used for display are
images. The algorithm takes advantage of spatial and
temporal redundancy within the set of images to
improve render rates and lessen storage requirements.
Render quality is highest since pixels sampled at higher
rates are preserved in each image

2. Previous Work

IBMR methods, techniques and areas of research can be
classified according to the following:

• warping methods
• scene reconstruction methods
• algebraic methods
• plenoptic methods
• point methods
• dynamic methods

These groups, while not a formally recognized set of
classification, provide a convenient means of grouping
past techniques and placing our work in proper context.

Warping methods attempt to create novel views or
transitions between views from a set of reference images

http://www.eg.org
http://diglib.eg.org

 Davis and Ficklin / Interactive Dynamic Environments Using IBMR

 © The Eurographics Association 2003.

by translating pixels from the source image plane to
locations on the target image plane. A significant por-
tion of early literature in IBMR can be classified in this
category including: texture mapping5,15 QuickTime
VR8, morphing4,37,38, view morphing31 and view interpo-
lation7,30. These methods increase the detail of a scene
or provide novel views at relatively quick speeds but
severely limit the user’s freedom of movement. Also,
some of these methods require user-directed correspon-
dence matching which prevents the algorithms from
extending temporally since the time required to mark the
many input images is often excessive.

Scene reconstruction methods recreate the 3D
geometry of the scene by estimating the geometry of
underlying scene objects represented in the input
images. Some examples include: the 8-Point Method24,
automatic 3D reconstruction of the scene13, the
Michelangelo Project22, volumetric methods9, meshes16,
and hybrid techniques11, among others. Despite the high
level of detail that reconstruction methods provide, they
are cumbersome when extended temporally since the
underlying geometries need to reflect temporal changes
in the scene. Also, rendering speed is dependent on the
complexity of the model, which may not guarantee an
interactive rendering rate.

Algebraic methods seek to create valid novel views
of a 3D scene from a set of reference images by using
the geometric or algebraic relationships between the
cameras, the view planes of each reference image, and
the virtual camera. Some examples include methods
introduced by Laveau and Fargus18, Shashua34 and
Avidan and Shashua3. Algebraic methods are limited
primarily in their extendibility. Particularly, they
require user intervention for correspondence marking or
are otherwise limited by camera placement or the
number of input images that can be used.

Point methods seek to reconstruct a novel view of a
scene where points are the only object primitive avail-
able. These points are then rendered as is without con-
version to geometric surfaces or correspondence match-
ing. Levoy20 initially proposed point rendering, and
techniques that borrow from it include volume render-
ing36, delta trees10, LDIs32,28, LDI trees6, and post-
rendering 3D warping26. Our research is most closely
related to the point methods, in particular LDIs and LDI
trees, since we take advantage of the fast rendering
speed that point methods offer. However, these methods
suffer from various disadvantages. LDIs in particular
lose the highly sampled pixels in the input images. LDI
trees attempt to overcome this deficiency but require the
construction of an octree, which becomes cumbersome
when extended temporally.

Plenoptic methods are based on the plenoptic func-
tion, formally introduced by Adelson and Bergen1. The
Plenoptic Function describes all visible light within a
scene and is represented, at most, by seven parameters.

These methods include plenoptic modeling27, light-field
rendering21,17, lumigraph14, multiple-center-of-projection
images29, concentric mosaics33, and plenoptic stitching2.
These methods allow a wide range of freedom of
movement but are difficult to extend temporally, and
require extreme amounts of memory.

Some recent dynamic methods include light fields
for dynamic rendering23, dynamic view morphing25, and
spatio-temporal view interpolation35. While these
methods relate in their attempts to use IBMR to render
dynamic scenes, they differ in their approaches. The
extension of the light field and view morphing do not
entirely overcome the limitations of their static
ancestors. Spatio-temporal view interpolation differs
from this research in that it seeks to interpolate the
dynamics of the scene over time and is not concerned
with rendering at interactive rates.

3. Algorithm Summary

Our algorithm consists of three principle stages, as
shown in Figure 1: image collection, pre-processing and
rendering. In the first stage, image collection, we use
images of synthetic scenes accompanied with depth and
normal information easily obtained from rendering en-
gines. Using images taken of a real scene is possible, but

• Image Collection Step (performed only once)
o build a highly detailed synthetic scene
o capture various animations of the scene from

different viewpoints
� obtain pixel color & depth information
� obtain surface normals per pixel (not neces-

sary but desired)

• Pre-Processing Step (performed only once)
o estimate normals (if not provided)
o remove temporal redundancy

� separate pixels into background images
� separate pixels into foreground images

o remove spatial redundancy of foreground and
background images

� register the images with one another
� remove redundant pixels with lower sam-

pling rates
o efficiently store the foreground and back-

ground images

• Rendering Step (performed as often as desired)
o load the pre-processed images
o register and reconstruct the novel views at in-

teractive rates using point method rendering

Figure 1: Algorithm for image-based rendering in a
dynamic environment.

 Davis and Ficklin / Interactive Dynamic Environments Using IBMR

© The Eurographics Association 2003.

requires further processing to determine per-pixel depth,
such as algebraic and normal estimation methods. Such
techniques for determining pixel depths and normals
from real images are restrictive, however, and do not
always provide accurate results. Fortunately, we can
compute these values directly since our target applica-
tion is for high-quality synthetic images of scenes that
are impossible to render traditionally at non-interactive
rates.

The second stage is a pre-processing step that greatly
improves the final rendering time. Many of the input
images contain redundant pixels that represent the same
point in space. We need not render redundant pixels and
consequently, we gain significant improvement in render
time by ignoring them. The pre-processing stage
removes these redundant pixels from the input images,
thus reducing the memory requirements and the image
size. Pixels with higher sampling rates are kept while
redundant pixels with lower sampling rates are
discarded. The images are efficiently stored to take
advantage of their smaller size.

Finally, the rendering stage, performed as often as
desired, generates novel views of the scene from any
vantage point the user desires. The algorithm renders
quickly and is capable of sustaining interactive frame
rates. We discuss each of these steps further in the
following subsections.

3.1 Image Collection

In the first step, image collection, we collect the
reference images used to create the environment.
During scene generation, we place any number of
cameras in static locations throughout a synthetic scene
to capture the animation from multiple viewpoints. Each
camera produces its own image sequence, which will be
used to create the virtual environment. Figure 2 shows
an example of a setup that could be used to create image
sequences for our algorithm.

Figure 2: A scene containing 9 cameras each viewing
the same scene from different vantage points. The image
sequences obtained from each are used to create the
virtual environment.

3.2 Pre-Processing

The pre-processing step consists of normal estimation (if
required), the removal of temporal and spatial redun-
dancy, and efficient image storage.

First, normals are an integral component of the pre-
processing calculations and must be provided or
estimated for each input image. If we use computer-
generated images as our input primitives, we can easily
compute normals during the standard rendering process,
save them as accompanying data to the image, and use
these exact normals during the pre-processing stage. If,
however, normals are not provided with the input
images, normal estimation can be performed with any
normal estimation technique, such as those most
commonly used with volume rendering.

Second, exploiting redundant information across an
image set allows us to extract repetitive information,
thus reducing the render time as well as the memory
footprint. Redundancy occurs when pixels in two or
more different images represent the same location in
world coordinate space. Two pixels can be spatially
redundant (they map to the same location in space) or
temporally redundant (they remain constant over a
period of time).

Removing spatially redundant pixels from an image
set is not new. With LDIs, spatial redundancy is
removed from an image set when two source pixels from
different source images map to the same destination
pixel and depth. In this case, one of the pixels is
discarded. However, LDIs do not preserve sampling
density of more highly sampled pixels since such pixels
map to the same locations and are discarded. These
pixels appear to be spatially redundant when, in fact,
they are not. LDI trees attempt to preserve these aliased
pixels but require the construction of an octree, which
becomes cumbersome when extended to dynamic
scenes.

Removing spatial redundancy requires the registra-
tion of all images into a common reference frame where
pixels are compared to determine if they represent the
same point on a surface in the scene. If two pixels are
determined to be spatially redundant, one of the pixels is
discarded. We perform this registration by mapping
every image in the same time frame to every other image
in that time frame and keeping those pixels that have the
highest sampling rate. Figure 3 demonstrates how two
different cameras can sample the same area of a surface
at different rates.

We use the following equation to indicate the camera
that samples a pixel at a higher rate:

 Davis and Ficklin / Interactive Dynamic Environments Using IBMR

 © The Eurographics Association 2003.

















−•

−•
∗

















•

•
=

)(cos

)(cos

)*(

)*(

1

2

222

111

VcxN

VcxN

DcdVc

DcdVc
r

where

c1V, c2V normalized view vector for c1 and c2
c1D, c2D normalized look vector for c1 and c2
d1 ,d2 the depth of the pixel from c1 and c2
xN the surface normal vector of point x

if r = 1 both pixels are sampled equally
if r < 1 c1 samples the pixel more highly
if r > 1 c2 samples the pixel more highly

Exploiting temporal redundancy has also been ex-
plored previously. Other branches of computer graph-
ics, such as ray tracing and radiosity, use temporal re-
dundancy (coherence) to decrease render times across
frames12. Additionally, the MPEG encoding standard
exploits redundancy to decrease the bit rate of its
streaming video19.

Once a pixel is determined to be temporally redun-
dant across a set of frames, it is separated from the im-
ages and preserved in a separate set of background im-
ages. Once all pixels have been processed, those re-
maining in the source images constitute the dynamic
portion of the scene, or in other words, the foreground.
These foreground and background image sets are not
representative of the actual background and foreground
of the underlying scene (although usually the static por-
tion of the scene consists of the actual background); they
represent two-dimensional image sets where the back-
ground consists of pixels that remain constant over time
and the foreground consists of pixels that are different
from one frame to the next. This process is shown in
Figure 4.

Finally, efficient image storage is the last stage of
the pre-processing stage. To reduce the size of the
images, we tile each one and ignore tiles where all pixels
were redundant and removed. We use simple run-
length encoding to reduce the image size further and
store the images in a customized IFF file format.

3.3 Rendering

The rendering stage consists of two steps: loading the
pre-processed images from memory, and re-projecting
the pixels in the images of the current time step to the
view plane of the novel view. We use the following
equations to perform the projection of the pixel from 2D
image coordinates to world coordinates:

Figure 4: The first image (left) is an original image from one camera in the scene where the yellow ball is the only dy-
namic object. The second image shows pixels that have been removed due to spatial redundancy with pixels from a dif-
ferent camera in the same time frame, which were sampled more highly in that image. Significantly more pixels will be
removed once comparisons with all other images in the time frame have been performed. The third image represents the
foreground image created from extracting the dynamic portions of the scene. The final image is a background image
created by extracting the static portions of the scene. The algorithm creates one background image per camera, and N
foreground images per camera, where N is the number of frames in the animation.

Figure 3: The surface of object A is better sampled by
camera c2 near point y, and by the camera c1 at point x.

 Davis and Ficklin / Interactive Dynamic Environments Using IBMR

© The Eurographics Association 2003.

d

a

fl

w

rw

uw

x *
2

*













 −

=

d
fl

h

rh

vh

y *
2

*





 −

=

z = d
P = (x, y, z, 1) T

where
u, v row column index of the current pixel
w, h width and height of the image plane
rw, rh resolution of the image in pixels
fl focal length
a aspect ratio: w / h
d pixel’s depth value
x, y, z 3D eye space coordinates
P 3D eye space coordinate vector

Once in world coordinates, the pixels are projected
onto the novel view plane using standard matrix multi-
plication. We perform a coarse blending within a 4-
pixel region to reduce the appearance of holes. These
calculations can be performed incrementally to speed
render time.

We render the background images once and “paint”
the foreground over top for each consecutive time step
(frame). Only when the user moves vantage points do

we re-render the background to reflect the changes in
viewpoint. Since a significant number of pixels are
removed from the foreground images, we have substan-
tially fewer pixels to render, thus allowing for signifi-
cant speedup.

4. Results

Testing was conducted on a Gateway AMD Athlon 1.1
GHz machine with 640Mb of RAM, a 7500 RPM IDE
Maxtor hard drive, and an NVIDIA GeForce4 Ti4400
AGP graphics card, running Red Hat Linux 7.3.

Our first test case, shown in the top row of Figure 5,
consisted of an image set from nine cameras viewing a
dynamic scene. At least one of the cameras was placed
to obtain a highly sampled view of a scene object. Each
camera produced 60 anti-aliased frame images. We
used Alias|Wavefront Maya 4.5 for modeling and ren-
dering. Surface normals of the scene objects were not
provided.

Our second test case consisted of an image set from
four cameras viewing a dynamic scene and is shown in
the bottom row of Figure 5. One of the cameras was
placed to obtain a highly sampled view. Each camera
produced 300 frames. Normals were provided with each
image.

Figure 5: The top and bottom left-most images represent original views of two dynamic scenes. The top scene was con-
structed using Maya and the bottom using a customized ray tracer. The center images represent a novel view of each
scene from a vantage point not available in any of the source images. The right-most images represent novel views and
show that highly sampled pixels are not lost. Note the high-quality detail of pixels in regions of original high sampling,
while surrounding regions of lower sampling produce poorer image quality. Overall, image quality of the top set of novel
views is not as good as that of the bottom images since the normals were estimated and the input images were anti-
aliased. Normals computed for the bottom images, which were not anti-aliased, provided more accurate reconstruction.

 Davis and Ficklin / Interactive Dynamic Environments Using IBMR

 © The Eurographics Association 2003.

In each test case, users were free to explore the envi-
ronment from any vantage point. No data structures,
other than the foreground and background images them-
selves, were needed to aid in rendering. As a result, we
achieved an 85% reduction in memory requirements,
compared to that of storing the original images, and on
average, an interactive render rate of 19 frames per sec-
ond. The render rate slows, however, when the user
changes vantage points since the background must be
repainted. (The background generally contains most of
the pixels in the scene and takes a bit longer to render.)

Note that we also do not adequately fill all holes that
appear in the scene. In general, the rendering remains
high in quality as long as the user’s sampling rate is
lower than that represented in the input images.

Overall, these results are quite promising, and
although performance is related to the amount of spatial
and temporal redundancy inherent in the scene, this
technique will work across a broad range of animations.

5. Conclusion

This research provides two primary contributions. First,
it presents an IBMR method that provides a walk-
through environment of a high-quality dynamic scene in
interactive time, where the user is not limited in freedom
of movement. Second, it uses a unique method for
storing pixels from a set of images in a medium
conducive to speed and low memory, while preserving
more highly sampled pixels without the creation of any
new data structures.

This research is useful in a wide variety of applica-
tions. One example is scientific visualization, where
scientists could observe changes in their experiments
with high detail from any vantage point. Another ex-
ample is virtual showcases of real estate properties
where the viewer, unlike with currently available appli-
cations, could look at any portion of a piece of property.
Virtual reality and possibly gaming applications could
also benefit from the level of detail obtained from such a
system.

While the algorithm has several benefits, some
limitations exist as well. Performance is dependent on
the number of pixels rendered, and the more cameras
viewing the scene, the more time spent rendering. The
amount of redundancy in a scene also affects the number
of pixels. While no limitations exist within the
algorithm as to the placement of cameras, placement
does affect the performance of the final rendering since
it contributes to the amount of spatial redundancy
available. Cameras whose viewing frustums do not
overlap cannot benefit from the removal of spatial
redundancy and temporal redundancy can also be
similarly limited.

Another limitation, common to many IBMR meth-
ods, is that the novel view lacks view-dependent light-
ing. Reflective and translucent materials cannot be
properly displayed since the algorithm knows nothing of
the underlying scene—it merely projects pixels and does
not alter pixel colors for proper view-dependent lighting.
The scene, therefore, is required to consist primarily of
diffuse objects.

This work seems to be part of the natural step that
IBMR is taking: from that of creating virtual static
scenes to virtual dynamic ones. We hope this work can
provide a building block in future research using IBMR
for virtual dynamic scenes.

References

1. Adelson, E. H. and Bergen, J.R., “The Plenoptic Function
and the Elements of Early Vision,” Computational Models
of Visual Processing, 1991, pp. 3-20.

2. Aliaga, D. G. and Carlbom, I., “Plenoptic Stitching: A
Scalable Method for Reconstructing 3D Interactive
Walkthroughs,” SIGGRAPH ‘01 Computer Graphics
Proceedings, Annual Conference, ACM SIGGRAPH,
August 2001, pp. 443-450.

3. Avidan, S. and Shashua, A., “Novel View Synthesis in
Tensor Space,” Proc. of IEEE Conference on Computer
Vision and Pattern Recognition, June 1997, pp. 1034-
1040.

4. Beier, T. and Neely, S., “Feature-Based Image
Metamorphosis,” SIGGRAPH '92 Computer Graphics
Proceedings, Annual Conference Series, ACM
SIGGRAPH, August 1992, pp. 35-42.

5. Blinn, J.F. and Newell, M. E., “Texture and Reflection in
Computer Generated Images,” CACM, Vol. 19, No. 10,
October 1976, pp. 542-547.

6. Chang, C., Bishop G. and Lastra A., “LDI Tree: A
Hierarchical Representation for Image-Based Rendering,”
SIGGRAPH ‘99 Computer Graphics Proceedings, Annual
Conference Series, ACM SIGGRAPH, August 1999, pp.
291-298.

7. Chen, S. and Williams, L., “View Interpolation for Image
Synthesis,” SIGGRAPH '93 Computer Graphics
Proceedings, Annual Conference Series, ACM
SIGGRAPH, August 1993, pp. 279-288.

8. Chen, S., “QuickTime VR—An Image-Based Approach
to Virtual Environment Navigation,” SIGGRAPH '95
Computer Graphics Proceedings, Annual Conference
Series, ACM SIGGRAPH, August 1995, pp. 29-38.

9. Curless B. and Levoy M., “A Volumetric Method for
Building Complex Models forom Range Data.”
SIGGRAPH'96 Computer Graphics Proceedings, Annual
Conference Series, ACM SIGGRAPH, August 1996, pp.
303-312.

10. Dally, W.J., McMillan L., Bishop, G. and Fuchs, H., “The
Delta Tree: An Object-Centered Approach to Image-

 Davis and Ficklin / Interactive Dynamic Environments Using IBMR

© The Eurographics Association 2003.

Based Rendering,” MIT AI Lab Technical Memo 1604,
May 1996.

11. Darsa, L., Silva, B. C. and Varshney, A., “Navigating
Static Environments using Image-Space Simplification
and Morphing,” Proc 1997 ACM Symposium on
Interactive 3D Graphics, April 1997, pp. 25-34.

12. Davis, T. A. "Generating Computer Animations with
Frame Coherence in a Distributed Computing
Environment," ACM Southeast Conference, April 1998.

13. Dorai C., Wang G., Jain, A.K. and Mercer, C., “From
Images to Models: Automatic 3D Object Model
Construction from Multiple Views,” Proc. of the 13th
IAPR International Conference on Pattern Recognition,
1996, pp. 770-775.

14. Gortler, S.J., Grzeszczuk, R., Szeliski, R. and Cohen, M.
F., “The Lumigraph,” SIGGRAPH '96 Computer
Graphics Proceedings, Annual Conference Series, ACM
SIGGRAPH, August 1996, pp. 43-54.

15. Greene, N. and Kass, M., “Approximating Visibility with
Environment Maps,” IEEE Computer Graphics and
Applications, Vol. 6, No. 11, November 1986, pp. 21-29.

16. Hoppe, H., “Progressive Meshes.” SIGGRAPH ‘96
Computer Graphics Proceedings, Annual Conference
Series, ACM SIGGRAPH, August 1996, pp. 99-108.

17. Isaksen, A., McMillian, L. and Gortler, S., “Dynamically
Reparameterized Light Fields,” SIGGRAPH '00 Computer
Graphics Proceedings, Annual Conference Series, ACM
SIGGRAPH, August 2000, pp. 297-306.

18. Laveau, S. and Faugeras O., “3-D Scene Representation
as a Colletion of Images,” Twelfth International
Conference on Pattern Recognition (ICPR '94), Vol. A,
October 1994, pp. 689-691.

19. Le Gall, D., "MPEG: A Video Compression Standard for
Multimedia Applications", Communcations of the ACM,
Vol 34:4, April 1991, pp. 47-58.

20. Levoy, M. and Whitted, T., “The Use of Points As a
Display Primitive,” UNC-CS Technical Report TR85-
022, University of North Carolina, 1985.

21. Levoy, M. and Hanrahan P., “Light Field Rendering,”
SIGGRAPH '96 Computer Graphics Proceedings, Annual
Conference Series, ACM SIGGRAPH, August 1996, pp.
31-42.

22. Levoy, M., Pulli, K., Curless, B. et al., “The Digital
Michelangelo Project: 3D Scanning of Large Statues.”
SIGGRAPH’00 Computer Graphics Proceedings, Annual
Conference Series, ACM SIGGRAPH, July 2000, pp.
131-144.

23. Li, W., Ke, Qi., Huang, X., Zheng, N., “Light Field
Rendering of Dynamic Scenes.” Machine Graphics and
Vision, Vol 7, No 3, 1998.

24. Longuet-Higgins, H.C., “A Computer Algorithm for
Reconstructing a Scene from Two Projections.” Nature,
Vol. 293, September 1981, pp. 133-135.

25. Manning, R.A., Dyer, C.R, “Interpolating view and scene
motion by dynamic view morphing.” Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, June 1999, pp. 388-394.

26. Mark, W.R., McMillan, L., Bishop, G., “Post-Rendering
3D Warping,” Proc 1997 ACM Symposium on Interactive
3D Graphics, April 1997, pp. 7-16.

27. McMillan, L. and Bishop G., “Plenoptic Modeling: An
Image-Based Rendering System,” SIGGRAPH’95
Computer Graphics Proceedings, Annual Conference
Series, ACM SIGGRAPH, August 1995, pp. 39-46.

28. Oliveira, M. M. and Bishop, G., “Image-Based Objects,”
Proc. of ACM Symposium on Interactive 3D Graphics,
April 1999, pp. 191-198.

29. Rademacher P. and Bishop G., “Multiple-Center-of-
Projection Images,” SIGGRAPH '98. Computer Graphics
Proceedings, Annual Conference Series, July 1998, ACM
SIGGRAPH, pp. 199-206.

30. Seitz, S. M. and Dyer, C. R., “Physically-Valid View
Synthesis by Image Interpolation,” Proc. IEEE Worksop
on the Representations of Visual Scenes, 1995, pp. 18-25.

31. Seitz, S. M. and Dyer, C. R., “View Morphing,”
SIGGRAPH '96 Computer Graphics Proceedings, Annual
Conference Series, ACM SIGGRAPH, August 1996, pp.
21-30.

32. Shade, J., Gortler, S., He, L. and Szeliski, R., “Layered
Depth Images,” SIGGRAPH ‘98 Computer Graphics
Proceedings, Annual Conference Series, ACM
SIGGRAPH, July 1998, pp. 231-242.

33. Shum, H. and He, L., “Rendering with Concentric
Mosaics,” SIGGRAPH ‘99 Computer Graphics
Proceedings, Annual Conference Series, ACM
SIGGRAPH, August 1999, pp. 299-306.

34. Shashua, A., “Algebraic Functions for Recognition”,
IEEE Transactions on Pattern Analysis & Machine
Intelligence, Vol. 17, No. 8, August 1995, pp. 779-789.

35. Vedula, S., Baker, S., “Spatio-Temporal View
Interpolation.” Proceedings of the 13th ACM
Eurographics Workshop on Rendering, June 2002.

36. Watt A., Watt M., Advanced Animation and Rendering
Techniques Theory and Practice, Addison-Wesley, 1992.

37. Wolberg, G., “Digital Image Warping,” IEEE Computer
Society Press, 1990.

38. Wolberg, G., “Image Morphing: A Survey,” The Visual
Computer, Vol. 14, 1998, pp. 360-372.

