
EUROGRAPHICS 2003 / M. Chover, H. Hagen and D. Tost Short Presentations

© The Eurographics Association 2003.

A Framework for Video-based and
Hardware-Accelerated Remote 3D-Visualization

Frank Goetz, Gitta Domik

Computer Graphics, Visualization and Image Processing
Fuerstenallee 11, D-33102 Paderborn, Germany

(frank.goetz|domik)@uni-paderborn.de

Abstract
This paper presents a framework for video-based and hardware-accelerated remote 3d-visualization that
produces and delivers high quality video streams at an accurate frame rate. The framework is based on the
portable scenegraph system OpenSG, the MPEG4IP package and the Apple Darwin Streaming Server. In
realtime generated visualizations will be multicast as an ISO MPEG-4 compliant video stream over the
RealTime Streaming Protocol from a server to a client computer. On the client computer a Java program
and an ISO MPEG-4 compliant video player are used to interact with the delivered visualization. While us-
ing MPEG-4 video streams we can achieve high image quality at a low bandwidth.

Categories and Subject Descriptors (according to ACM CCS):
I.3.1 [Computer Graphics] Distributed/network, C.2.4 [Distributed Systems]: Distributed applications.

1. Introduction
Not so long ago the lack of communication was ham-
pering the progress of research. Today, researchers
share information over the internet and cooperation is
demanded in all areas of the industry. Particularly com-
puter-generated visualizations took a firm place in many
fields, like geosciences, medicine, architecture, automo-
bile construction and space technology.

Interactivity and dynamics in realtime generated visu-
alizations were strongly improved by today’s more effi-
cient graphics accelerator boards and arising multiproc-
essor systems. Often complex and interactive visualiza-
tions can only be rendered on powerful graphics servers
or graphics clusters, since only they achieve the desired
representation speed and image quality. Therefore it is
necessary to transfer the power of these graphics servers
to the location and the computer of the user that wants
to work with this visualization. In the last years scien-
tists and researchers have given a great deal of attention
to the area of remote visualization.

A common method to transport visualizations is based
on the streaming of compressed meshes and textures
from a server to a client computer. While visualizing
complex scenes with a huge amount of polygons this
method often needs too much network capacity and has
high demands on the capabilities of the client com-
puters. In most cases, the client computer offers only a
fragment of processor power and graphics power that a
server is able to achieve. Finally, with this method it is
not possible to get accurate frame rates while sending
interactive and realtime generated visualizations from a
server to a client computer. Accurate frame rate means
at least a frame rate of 20 frames per second. In that
case a user has to accept limitations because compro-
mises were made by sending large datasets to the client
computer.

The aim of our work is to develop a platform independ-
ent visualization server that takes advantage of the func-
tionality of current graphics accelerator boards and de-
livers a high performance video stream to the remote or
client computer. In our case high performance video
stream means that the picture quality is high, the frame
rate is accurate, the needed bandwidth is low and the

http://www.eg.org
http://diglib.eg.org

 Goetz et al / A Framework for Video-based and Hardware-Accelerated Remote 3D-Visualization

© The Eurographics Association 2003.

latency is as short as possible. While using video
streams we have a constant and calculable size of net-
work capacity and processor power that has to be sup-
ported by the client computer. The size of the video
stream is independent from the size of the visualization
and the graphics accelerator board of the client com-
puter does not need special features to display interac-
tive and animated visualizations at an accurate frame
rate. It is possible to use the majority of available com-
puters, even laptops and handhelds, as a visualization
client.

A further point should be that different users are able to
access the data that was generated by the visualization
server at the same time. Also the coordination between
active users should be as easy as possible. It is very
important that every user of the cooperative working
process gets the same potential for work. There should
not be any problems concerning the geographical loca-
tion or the capabilities of the hardware. The user should
not be restricted or excluded from the working process
because of using limited hardware or software. The
ability to interact, navigate and manipulate at an accu-
rate speed has to be available for all users of a coopera-
tive working process.

The rest of the paper is organized as follows: first, other
frameworks and solutions for remote 3D-visualization
are introduced; then all necessary packages, libraries
and servers that we need for our solution are presented;
afterwards, the architecture of our system is explained;
in the last part results are presented.

2. Previous Work
There are different ways of realizing remote visualiza-
tion. One of the latest remote visualization frameworks
is Chromium1. Chromium is a stream-processing
framework for interactive rendering on clusters.

Silicon Graphics, Inc. provides a commercial solution
called OpenGL Vizserver2. OpenGL Vizserver is a
technical and creative computing solution designed to
deliver visualization and collaboration functionality to
any client, whether on a desktop workstation or a wire-
less tablet. OpenGL Vizserver allows users to remotely
view and interact with large data sets from any other
system at any location in an organization and to collabo-
rate with multiple colleagues using these same applica-
tions and data. Because of design decisions the OpenGL
Vizserver works only with the SGI Onyx family. Simi-
larly to the solution of Stegmaier et al.3, the VizServer
relies on dynamically linked executables in order to be
able to implant its functionality without modifying the
target application.

The generic solution for hardware-accelerated remote
visualization from Stegmaier et al.3 works transparently
for all OpenGL-based applications and OpenGL-based
scene graphs and does not require any modifications of
existing applications. They use a similar approach as
Richardson et al.4 in their paper virtual network comput-
ing. In this paper a remote display system that does not
support the remote use of 3d graphics acceleration hard-
ware is presented.

Ma and Camp5 developed a solution for remote visuali-
zation of time-varying data over wide area networks.
This system involves a display daemon and a display
interface. The data from the renderer is automatically
compressed, transported and decompressed. By using a
custom transport method, they are able to employ arbi-
trary compression techniques.

Other solutions that support remote visualization were
developed by Engel and Ertl6 and Engel et al.7,8. In tex-
ture-based volume visualization for multiple users on
the world wide web Engel and Ertl describe a volume
visualization tool that uses JAVA and the Virtual Real-
ity Modelling Language (VRML). In this case the client
computer has to be equipped with a 3d graphics accel-
eration hardware to render the transmitted VRML scene
with an accurate speed. In their latest papers Engel et al.
describe visualization systems that use image compres-
sion technologies to transport the visualization data
from the server to the client computer. In their paper a
framework for interactive hardware-accelerated remote
3d-visualization the visualization parameters and GUI
events from the clients are applied to the server applica-
tion by sending CORBA (Common Object Request
Broker Architecture) requests.

Their remote visualization framework is very similar to
our framework. Instead of CORBA we developed our
own network communication layer. The main difference
to all other remote visualization frameworks and also
the demarcation to the systems by Engel et al. is that our
framework transports MPEG-4 video streams instead of
sending only pictures from the server to the client. This
improves the quality and capacity of the data to be sent.

3. Background for our solution
One requirement of our framework is to use only free
and non commercial packages, libraries and servers. In
this chapter all used packages, libraries and servers are
presented briefly.

 Goetz et al / A Framework for Video-based and Hardware-Accelerated Remote 3D-Visualization

© The Eurographics Association 2003.

3.1. CommonCPP
CommonCPP offers a highly portable C++ application
development framework. It provides classes for threads,
sockets, daemon management, system logging, object
synchronization, realtime network development, persis-
tent object management, and file access. These are all
features that are not supported by standard C++ librar-
ies.

The CommonCPP Framework is used by our Comm-
Server for the communication between the server and
the client. The CommServer is a socket based and
thread per session server. For every session a new
thread will be generated. All incoming messages will be
processed by this thread and after the connection is
closed the thread will be terminated. The CommServer
listens on a standard port and generates a NetRPCMgr
object for incoming connections. Another port is used
for the data transportation between the CommServer
and the client. After a connecting admission the
NetRPCMgr object waits for further connections. The
NetRPCMgr reads all incoming data and sends them as
a byte-array to the ClientHandler. The ClientHandler
tries to analyze this data. If the type of the data structure
was detected, all possible parameters will be extracted.
With these parameters the fitting server functions can be
called. In this way all interactions that are initiated by
the client computer can be managed.

3.2. OpenSG
OpenSG9 is a portable scenegraph system to create real-
time graphics programs. OpenSG runs on different plat-
forms like IRIX, Windows and Linux and is based on
OpenGL. OpenSG is not a complete VR system. It is the
rendering basis on top of which VR systems can be
built. OpenSG has a nice list of supported features,
some of which are unique, and thus make OpenSG a
very useful scenegraph.

Multithreaded asynchronous scenegraph manipulation is
one of the central parts of the OpenSG design. The
OpenSG data structures are set up in a way that allows
multiple independent threads to manipulate the scene-
graph independently without interfering with each other.
This feature is very interesting and important for remote
visualization systems that should support collaborative
work. By using this feature the manipulations of each
user will be synchronized with the manipulations of the
other users. Finally, every user of the collaborative
working community gets the same view on the current
dataset.

3.3. Video4Linux Loopback Driver
This driver implements a video pipe using two
video4linux devices. The first device is used by the

program supplying the data. The second device acts as a
normal video4linux device, it should be usable by any
application that fulfills the video4linux specifications.

The loopback device has two operating modes:

In the simple one-copy mode the supplying program
specifies the size of the images and the used palette and
uses the write function to push its images to the pipe.
This mode is mostly for feeding fixed size images with-
out any knowledge about the client. At the moment our
system only supports this mode and streams a 24bit true
colour video with a size of 352*288 pixels to every
client computer.

In the zero-copy mode the supplying program regularly
polls the device. Here the supplying program has almost
complete control over the device’s behaviour and it will
be mainly used to implement complex multiple tuner,
channel and size configurations. This mode is of interest
for allowing the remote client to change the resolution
of the streamed video. Especially for computers with
small displays like handhelds it is important to reduce
the size of the video stream.

3.4. MPEG4IP
The MPEG4IP project10 was started by Cisco's Tech-
nology Center to further the adoption of audio and video
streaming standards, and to serve as a toolkit to track
the ISMA (Internet Streaming Media Alliance) specifi-
cations and requirements. MPEG4IP provides an end-
to-end system to explore MPEG-4 multimedia. The
MPEG4IP package includes many existing open source
packages and offers the possibilities of integrating them
together. This is a tool for streaming video and audio
that are standards-oriented and free from proprietary
protocols and extensions. MPEG4IP is available for
Linux, Windows and MacOS. In our Framework we use
two components of the MPEG4IP package:

The MP4Live Server is able to produce MPEG-4 con-
form video streams in real time. The basic idea is that
the video stream will be supplied by a video capture
board or a camera. Afterwards it will be compressed and
transmitted to another computer. At the moment the
MP4Live Server is only available for Linux, the rest of
the MPEG4IP package is available for Windows and
MacOS, too. Until now only the open source and ISO
MPEG-4 compliant XviD (http://www.xvid.org) video
codec is supported by the MP4Live Server, but without
problems other video codecs can be adapted for the
MP4Live Server.

The MP4Player supports different video/audio codecs
and the RTP/RTSP (Realtime Transport Protocol / Real-

 Goetz et al / A Framework for Video-based and Hardware-Accelerated Remote 3D-Visualization

© The Eurographics Association 2003.

RealTime Streaming Protocol) protocols. We use the
source code of the MP4Player to build our own dynamic
link library. This library represents the non Java part of
our client software.

3.5. Apple Darwin Streaming Server
The Apple Darwin Streaming Server is a server tech-
nology (http://developer.apple.com/darwin) which al-
lows sending streaming video data to clients across the
Internet using the industry standard RTP and RTSP
protocols. Further on, the Apple Darwin Streaming
Server supports a new technology called Instant-On
Streaming. Instant-On dramatically reduces the delay
caused by buffering of the media stream prior to play-
back. Another important feature is the MPEG-4 support.
The Apple Darwin Streaming Server can serve ISO-
compliant MPEG-4 files to any ISO-compliant MPEG-4
client, including any MPEG-4 enabled device that sup-
ports playback of MPEG-4 streams over IP. A computer
can serve on-demand or live MPEG-4 streams. Finally,
the Apple Darwin Streaming Server supports a new and
interesting feature called Skip Protection. Skip Protec-
tion uses excess bandwidth to buffer available data
faster than real time on the client machine. The commu-
nication between client and server results in retransmis-
sion of only the lost packets, in case packets are lost.
This reduces the traffic in the network.

4. Implementation
4.1. Server
Our framework consists of three different servers: the
Apple Darwin Streaming Server, the MP4Live Server
and our Visualization Server based on OpenSG (see
Figure 1). The principal reason for using OpenSG was
the support of clustering. So in the future our visualiza-
tion framework can easily be extended to be used by
several computers at the same time. Then as many dif-
ferent views on a dataset can be delivered as computers
in the cluster are available and every user can change
his line of sight explicitly. Momentarily only one user
has the possibility of changing the line of sight at the
same time. All other users have to accept this choice.
When using a cluster, all three before mentioned servers
have to be installed on each computer of this cluster.
Each cluster node needs a powerful graphics accelerator
board, enough memory and processor power. The dif-
ferent Darwin Streaming Servers and MP4Live Servers
supply for each user a view-dependent video stream.

At the moment we can only use Linux as a server sys-
tem, because the MP4Live Server is not available for
Windows or MacOS. Furthermore, a video device has to
be installed for the MP4Live Server. This can be done
by using the Video4Linux loopback driver. Our
visualization server provides this new virtual video

zation server provides this new virtual video device with
the current rendered OpenGL Frame.

Figure 1: Server architecture

In the last years, the grabbing of the OpenGL frame-
buffer was a large problem when using consumer graph-
ics accelerator boards from companies like NVIDIA or
ATI. Only high-end graphics computers for example
from SGI supported fast reading out of the framebuffer
of the graphics accelerator board into the main memory
of the computer. To ensure that the OpenGL frame-
buffer is not empty, because the OpenGL window is
covered by another window, we grab the backbuffer
instead of the frontbuffer. This does not work perfectly
with all drivers. On our system even the screensaver can
turn on without causing problems to the OpenGL ren-
dering process. Another possibility is the use of the
pbuffer (preserved pixel buffer), a hardware-accelerated
off-screen buffer. Unfortunately not all drivers on dif-
ferent platforms support preserved pixel buffers. The
easiest way would be to use the accumulation buffer,
but most graphics boards or drivers have no hardware-
accelerated support for this buffer. Without hardware
acceleration the use of the accumulation buffer is ten
times slower than the use of hardware-accelerated buff-
ers.

At the moment our visualization server grabs 50 frames
per second and sends them to the video device. The
MP4Live Server uses the video device as input device
and generates a MPEG-4 video stream. The frequency
of the encoded video is 25 frames per seconds. The

 Goetz et al / A Framework for Video-based and Hardware-Accelerated Remote 3D-Visualization

© The Eurographics Association 2003.

MP4Live Server supports unicast or multicast video
streams. Until now the encoded MPEG-4 video stream
is only available for the server. Finally, we need a
streaming server that distributes the video stream in the
network. We decided to use the Apple Darwin Stream-
ing Server, because it fulfills all our requirements. After
the installation and configuration of the Apple Darwin
Streaming Server every client computer with installed
ISO-compliant MPEG-4 video player is able to display
the generated visualization.

4.2. Client
Our goal is to realize the client software completely in
Java. Such a solution is platform independent and runs
on arbitrary operating systems and hardware platforms,
like for example handhelds, notebooks and Tablet PCs.
Currently most parts of the client software are written in
Java (see Figure 3), like the whole communication layer
and the Graphical User Interface. The communication
layer of the client works exactly like the in C++ written
CommServer, but was completely designed in Java.
Nowadays a complete Java Runtime Environment is
installed on the majority of client computers. For this
reason we decided to build the graphical user interface
with Swing instead of using the rudimentary AWT
Toolkit. The graphical user interface is very flexible, the
appearance of all buttons, menus and their functionality
are specified on the server. If the server delivers new
functionality, the status of a user changes or a new visu-
alization with different features is loaded, then the client
software has not to be reloaded. Only the entries in the
menus and the appearance of the buttons will be
changed.

.

Figure 2: Player library embedded in the client software

Figure 3: Client architecture

At the moment there are three different kinds of user
categories:
a) a user that has full control and is able to navigate into

the generated scene
b) a user that has full control, but can only manipulate

and not navigate in the rendered scene
c) a user that is only allowed to watch the visualization,

but has not the possibility of changing anything

If the MP4Live Server uses the multicasting protocol
many users can be of the category two and three, but
only as many users as computers are available in the
cluster can be of the category one. While using the mul-
ticast protocol instead of a normal unicast protocol the
server does not need more calculation power to provide
all users with a video stream. Only the routers have to
distribute more data packages.

To deliver the whole functionality of the server to the
client computer every visualization technique of the
framework and all functions of the visualization frame-
work itself have to offer an interface to receive and send
all important parameters from the server to the client
and vice versa. The values of these parameters can be
modified by the user at the client computer. For the
mouse navigation and interaction in the rendered scene
all parameters have to be sent from the client computer
to the server by using the existing socket connection.
Furthermore all menus, toolbars and popup windows
offer functionality to control the specified visualization
technique and settings to define the appearance of the
different visualizations. The server program has the
ability to change the look and feel of the graphical user
interface at the client side. Thereby new functionality in
the server program can be made available to the user at

 Goetz et al / A Framework for Video-based and Hardware-Accelerated Remote 3D-Visualization

© The Eurographics Association 2003.

run-time without an explicit update of the client soft-
ware.

To view the video stream the user has two possibilities.
The first one is to download a dynamic link library
based on the MP4Player. This library is written in C++.
All communications between the client software and the
video player library are done by the use of the Java Na-
tive Interface. The player library generates a frame with
the video stream that is delivered from the server. This
frame can be integrated in our Java based client soft-
ware as shown in Figure 2. If the user does not want to
download anything there is the possibility of viewing
the delivered video stream with a common MPEG-4
video player (see Figure 4). This is possible because the
Apple Darwin Streaming Server delivers an ISO-
compliant MPEG-4 stream over the RTP/RTSP proto-
col. Tests with the mp4player provided with the
MPEG4IP package, the Apple Quicktime 6 Player and
the RealPlayer with Envivio plug-in delivered positive
results. Thus, in principle, all RTSP capable video play-
ers, which support an ISO-compliant MPEG-4, can be
used.

In a future version we will support the Java Media
Framework. At the moment there are no ISO-compliant
MPEG-4 codecs that can be used with the Java Media
Framework and that support the RTSP protocol. The
MPEG-4 Video for JMF plug-in from the IBM alpha-
Works group is one of the first pure Java MPEG-4 solu-
tions for the Java Media Framework, but by now this
plug-in is only able to display video streams that were
created with the MPEG-4 Simple Profile. At the mo-
ment we are working on embedding the XviD video
codec into the Java Media Framework.

Figure 4: Client software with Quicktime 6 Player

5. Results
In the following tests we took a Dell Server with 2.4
GHz Pentium4 processor, 1024 MB main memory and
NVIDIA GeForce4 TI graphics accelerator board. A
Dell Laptop with a 1.4 GHz Pentium4 mobile processor,
512 MB main memory and a NVIDIA GeForce4 440
Go graphics accelerator board acted as client.

At a resolution of 352*288 pixels our server needs only
less than 40 percent of the processor time to calculate
the MPEG-4 video stream with the XviD codec. The
rest of the time can be used to render the visualization.
If we change the resolution to 768*576 pixels, the cal-
culation time for the video stream needs nearly 70 per-
cent of our processor time. More results can be found in
Table 1. Other resolutions are at the moment not inter-
esting, because a limited client computer would not
have the processor power to decode such video streams.

Table 1: Processor time for encoding the video stream

Changing the kilobit rate from 100 Kbit/s up to 4000
Kbit/s has no effect on the calculation time. Only the
image quality and the capacity of the needed bandwidth
increase. The different qualities of the different com-
pression factors are shown in Figure 5.

Next we will summarize some results concerning the
glReadPixels function. With an OpenGL window reso-
lution of 640*480 we lose on a Geforce4 TI 4200 graph-
ics accelerator board at the most a quarter of the frame
rate while using the glReadPixels function. In our spe-
cial case the frame rate changes from 80 to 60 frames
per second. At the same resolution, the frame rate de-
creases to half as much on a GeForce2 MX graphics
accelerator board while using the glReadPixels function.
An interesting phenomena is that on a GeForce4 440 Go
graphics accelerator board we hardly lose any frames
per second while using the glReadPixels function.

Resolution Format Used processor
ti128*96 SQCIF 7% – 8%

176*144 QCIF 11% - 12%
320*240 SIF 31% – 32%
352*288 CIF 36% - 37%
352*480 Half D1 48% – 49%
640*480 4SIF 63% - 64%
704*480 D1 64% - 65%
720*480 NTSC CCIR601 65% - 66%
768*576 SQ PAL 69% - 70%

 Goetz et al / A Framework for Video-based and Hardware-Accelerated Remote 3D-Visualization

© The Eurographics Association 2003.

Finally, we will give some information about the la-
tency. In a local area network with a 100 Mbit/s Ethernet
connection we a have a streaming latency lower 0.5
seconds between the server and the client. The commu-
nication latency between the server and client is lower
then 0.1 seconds.

Figure 5: Encoded video frames at a compression rate
of 100KBit/s, 1000KBit/s, 2000Kbit/s and 4000KBit/s

6. Conclusions and Future Work
We have presented a framework which allows interac-
tive hardware-accelerated remote 3d-visualization from
nearly all Internet-connected desktop PCs. Only a Java
Virtual Machine and an ISO-compliant MPEG-4 video
player, that supports the RTSP protocol, have to be in-
stalled on the client computer. In the near future we will
additionally support the Java Media Framework. Then
only the Java Virtual Machine and the Java Media
Framework have to be installed on the client computer.
For the reason that we use MPEG-4 video streams and
Instant-On Streaming we get a high picture quality and a
minimum of latency. Even connected with an ADSL
(Asymmetric Digital Subscriber Line) connection a user
can work at an accurate speed on the visualization
server.

In future versions of our framework we will improve the
collaborative features and the visualization toolkit.
Therefore we have to expand our server to more than
one computer, we have to connect the individual server
computers and we have to ensure that the manipulations
of different users will be correctly adjusted to the visu-
alization.

Recapitulatory it can be said that the use of a visualiza-
tion server offers flexible possibilities for spatially sepa-

rated cooperation partners that have only a standard PC
with a normal internet connection as input device.

Acknowledgements
The authors wish to thank the students of the project
group “creativity & technique” for their help on imple-
menting parts of the system.

References
1. G. Humphreys, M. Houston, R. Ng, R. Frank, S.

Ahern, P. Kirchner, J. Klosowski. Chromium: A
Stream-Processing Framework for Interactive
Rendering on Clusters, SIGGRAPH 2002.

2. Silicon Graphics, Inc. OpenGL Vizserver 3.1:
Application-Transparent Remote Interactive Visu-
alization and Collaboration, Technical White Pa-
per, Silicon Graphics, Inc., June 2003.
http://www.sgi.com/software/vizserver/.

3. S. Stegmaier, M. Magallón, and T. Ertl. A Generic
Solution for Hardware-Accelerated Remote Visu-
alization. In Procceedings of EG/IEEE TCVG
Symposium on Visualization VisSym '02, 2002.

4. T. Richardson, Q. Stafford-Fraser, K. R. Wood,
and A. Hopper. Virtual Network Computing.
IEEE Internet Computing, 2(1), January 1998.

5. K.-L. Ma and D. M. Camp. High performance
visualization of time-varying volume data over a
widearea network status. In Supercomputing,
2000.

6. K. Engel and T. Ertl. Texture-based Volume
Visualization for Multiple Users on the World
Wide Web. InGervautz, M. and Hildebrand, A.
and Schmalstieg, D., editor, Virtual Environments
’99, pages 115–124. Eurographics, Springer,
1999.

7. K. Engel, O. Sommer, and T. Ertl. A Framework
for Interactive Hardware Accelerated Remote
3DVisualization. In Proceedings of EG/IEEE
TCVG Symposium on Visualization VisSym ’00,
pages 167–177,291, May 2000.

8. K. Engel, P. Hastreiter, B. Tomandl, K. Eberhardt,
and T. Ertl. Combining Local and Remote Visu-
alization Techniques for Interactive Volume Ren-
dering in Medical Applications. In Procceedings
of IEEE Visualization ’00, pages 449–452. IEEE,
2000.

9. D. Reiners , G. Voß G., Behr J., 2002: OpenSG -
Basic Concepts, In: 1. OpenSG Symposium,
Darmstadt, Germany, 2002

10. D. Mackie. Streaming Video & MPEG4IP. Pres-
entation of MPEG4IP at the Silicon Valley Linux
User's Group on February 6th, Cisco Technology
Center, 2002.

