
EUROGRAPHICS 2003 / M. Chover, H. Hagen and D. Tost Short Presentations

Shadow Mapping Based on Dual Depth Layers

D. Weiskopf and T. Ertl

Institute of Visualization and Interactive Systems
University of Suttgart

Abstract
Shadow maps are a widely used means for the generation of shadows although they exhibit aliasing artifacts and
problems of numerical precision. In this paper we extend the concept of a single shadow map by introducing dual
shadow maps, which are based on the two depth layers that are closest to the light source. Our shadow algorithm
takes into account these two depth values and computes an adaptive depth bias to achieve a robust determination
of shadowed regions. Dual depth mapping only modifies the construction of the shadow map and can therefore
be combined with other extensions such as filtering, perspective shadow maps, or adaptive shadow maps. Our
approach can be mapped to graphics hardware for interactive applications and can also be used in high-quality
software renderers.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Shadows are important elements in creating a realistic im-
age and in providing the user with visual cues about the spa-
tial structure of the scene and the relative positions of ob-
jects. Studies have shown that shadows are crucial for spa-
tial perception and that the use of shadows as depth cues
enhances the accuracy of object positioning8. Classical al-
gorithms for generating shadows date back to the early days
of computer graphics. A representative for an object-space
approach is the shadow volume algorithm3; image-space al-
gorithms originate from shadow depth mapping16.

In this paper, we exclusively deal with this image-space
approach because shadow mapping is an effective and
widely used shadow determination technique and provides
several important benefits. Not only does it allow for any
class of geometric primitives without any additional precau-
tion, it is also the only shadow approach that requires stor-
age complexity independent of the number of objects in the
scene18. Moreover, the algorithmic structure of shadow map-
ping lends itself to an efficient implementation on graphics
hardware as depth maps readily fit into the concept of textur-
ing. Direct support for shadow mapping dates back to sgi’s
InfiniteReality10 series and is included in consumer market
graphics cards like the nVIDIA GeForce 3. The current gen-
eration of GPUs (graphics processing units) support shadow

mapping by providing floating point precision both in pro-
grammable fragment operations and texture formats. Not
only is shadow mapping used in interactive applications but
also in high-quality offline rendering systems such as Ren-
derMan or Maya.

Shadow mapping is a two-phase process. First, the
shadow depth map is filled by rendering the scene from the
perspective of the light source. Then, the scene is drawn as
seen from the actual eye point. During rendering of each
fragment, the region to be shaded is projected onto the re-
spective cell in the shadow depth map and the fragment’s
depth is compared to the value stored in the depth map in
order to determine shadowed regions.

Unfortunately, shadow mapping is subject to some un-
pleasant disadvantages. The quality of the shadow heavily
depends on the resolution of the shadow map. Aliasing prob-
lems occur due the sampling during shadow testing, espe-
cially close to shadow edges. The reason for this is the fact
that a fragment to be tested cannot be exactly mapped onto
a texel in the depth map. A typical artifact is self-shadow
aliasing, in which a polygon is considered to shadow itself
because of the inaccurate sampling method.

In order to reduce aliasing artifacts and achieve a robust
depth comparison, we extend the original shadow mapping

c© The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org


Weiskopf and Ertl / Shadow Mapping Based on Dual Depth Layers

approach to dual shadow mapping, which takes into account
not only the closest surface to the light source but the two
closest surfaces. An adaptive bias is applied to the depth of
the closest surface before the depth comparison with the cur-
rent fragment is performed. The other parts of the original
shadow mapping approach are not modified.

The rest of this paper is organized as follows. First, a re-
view of previous work on shadow generation is given, where
the focus is on methods to overcome aliasing artifacts. In
Section 3, Woo’s approach17 to reducing self-shadow alias-
ing is described in more detail because it serves as a basis
for dual shadow mapping, which is explained subsequently.
An implementation of dual shadow mapping on graphics
hardware is presented in Section 5; resulting images are dis-
cussed in Section 6. The paper ends with a brief conclusion.

2. Previous Work

There is a large body of literature dealing with shadow gen-
eration. We refer to the article by Woo et al.18 for a survey of
shadow algorithms in general, and to the book by Akenine-
Möller and Eric Haines1 for a presentation of real-time tech-
niques.

We focus our review of previous work on issues of shadow
mapping and, in particular, reducing aliasing artifacts. A
widely used solution to self-shadow aliasing is the use of
a constant bias (shift of depth values)11. The problem is that
the value for an appropriate bias depends on the scene and
is quite hard to specify. Wang and Molnar15 report that even
for some simple test scenes it is impossible to find an accept-
able bias. Therefore, they propose an technique that reduces
the need for a bias for the special case of a scene consist-
ing of solid objects only. Their method works by rendering
only back faces into the shadow map, relying on the fact that
aliasing problems cannot occur in the neighborhood of back
faces because the back faces of a closed surface are not illu-
minated anyway.

Another approach to reducing self-shadow aliasing is
taken by Woo17, who averages the depths of the two clos-
est surfaces (with respect to the light source) to deter-
mine the depth shadow map. This method works for closed
and non-closed objects alike. Woo’s technique is the ba-
sis for the shadow generation part of the original Talis-
man architecture14. More recently, Everitt et al.5 have pre-
sented a GeForce 3-based implementation of Woo’s tech-
nique based on the extraction of the two closest surfaces via
depth peeling4.

Hourcade and Nicolas7 propose the priority buffer as a
different form of shadow mapping, which solves the biasing
issue and lends itself to a straightforward implementation on
graphics hardware. In the priority buffer, only object IDs are
stored, not depths. However, if only a single ID is attached
to each object, intended self-shadowing for concave geome-
tries is not taken into account. On the other hand, artifacts at

triangle edges can occur if a separate ID is issued for each
triangle.

Aliasing artifacts can also be reduced by adapting the res-
olution of the shadow map. Fernando et al.6 replace the “flat”
depth map by an adaptive, hierarchical representation that is
continously updated. This method requires a traversal and
refinement of the hierarchical data structure and cannot be
completely mapped to graphics hardware. Tadamura et al.13

use multiple shadow maps with varying resolution to re-
duce aliasing for outdoor scenes. Their technique cannot be
mapped to graphics hardware and therefore is not suitable
for interactive applications. Another approach to alleviating
problems of undersampling is based on filtering. Reeves11

introduces percentage closer filtering as the appropriate way
of filtering shadow maps. As opposed to normal texture fil-
tering, the fragment’s depth and the entry in the shadow map
are first compared and afterwards the binary results are fil-
tered to obtain the proportion of the region in the shadow.
Deep shadow maps by Lokovic and Veach9 extend the con-
cept of filtering by storing approximate attenuation functions
for each shadow map texel.

Finally, Stamminger and Drettakis12 propose perspective
shadow maps to reduce perspective aliasing. However, their
technique aggravates the problem of self-shadowing because
objects are scaled non-uniformly. Therefore, a robust depth
comparison is especially useful in combination with per-
spective shadow maps.

3. Midpoint Shadow Maps

Woo17 introduced a virtual, intermediate depth map to avoid
many biasing and self-shadowing problems associated with
shadow maps. In the first part of the shadow mapping algo-
rithm, not only is the closest depth value with respect to the
light source determined, but the two closest values are stored
in separate buffers. Afterwards the two buffers are averaged
into a single depth texture, which serves as the shadow map
for the subsequent rendering of the shadowed scene.

For a closed surface of a solid object, this shadow map
represents depth values of a virtual surface passing through
the middle of the object. Therefore, we use the term midpoint
shadow mapping for this approach. Figure 1 illustrates the
midpoint shadow map for a polygonal test object.

On the one hand, this extension has the advantage that
almost all potential precision problems are solved by shift-
ing the bounds for depth comparisons away from the clos-
est, unshadowed surface. On the other hand, self-shadowing
and bias remain issues for a small number of cases. Fig-
ure 2 shows examples for the two major classes of prob-
lems. In Figure 2 (a), the fragment marked by the black dot
might become erroneously unshadowed because the mid-
point shadow map immediately to the right is behind the
black dot. This self-unshadowing has two reasons. First, the
finite sampling of the shadow map might cause a mapping

c© The Eurographics Association 2003.



Weiskopf and Ertl / Shadow Mapping Based on Dual Depth Layers

shadow
map

light source

object

Figure 1: Midpoint shadow map. A directional light source
is above. A virtual surface (dashed line) in between the two
closest layers of the polygonal test object (solid line) serves
as shadow map.

to an inappropriate depth value. Second, the distance of the
second closest surface affects the position of the midpoint
shadow map. Figure 2 (b) demonstrates that self-shadowing
can appear in regions close to a silhouette line. If a silhouette
point is further away from the light source than neighboring
parts of the midpoint shadow map, the silhouette point might
become self-shadowed.

4. Dual Shadow Maps

To facilitate the subsequent discussions, we formalize
midpoint shadow mapping. The depth of a point—or a
fragment—that has to be shadow-tested is denoted zfrag; the
depths of the closest and second closest surfaces are named
z1 and z2, respectively. The midpoint shadow test can now
be written as

zfrag < z1 + zbias(z1,z2) , (1)

with the bias function

zbias(z1,z2) = zbias, midpoint(z1,z2) =
z2 − z1

2
.

Generalizing midpoint shadow maps, we adopt the concep-
tional point of view that shadow tests can be considered as a
depth comparison with a virtual surface that is shifted away
from the closest surface by a variable amount zbias(z1,z2).
As the bias is a function of the depths of the two closest sur-
faces, we introduce the term dual shadow mapping for this
more generic approach.

In this framework, a widely used constant bias11 can be
written as zbias,const(z1,z2) = zoffset, with the constant offset
zoffset. Here, the bias function is independent of the depth
structure of the scene. The problem of this approach is to
find an appropriate value for the offset in order to fulfill two
contradicting requirements: if the value is too small, self-
shadowing will occur; if the value is too large, objects that
are close to their occluder will be erroneously illuminated
(Figure 3). Typically, the bias is set according to the size

of the scene objects and can often be adjusted by the user
during runtime.

We propose to choose the bias function

zbias(z1,z2) = min
( z2 − z1

2
,zoffset

)

, (2)

in order to combine the positive aspects of midpoint
shadow maps and a constant offset. On the one hand, self-
unshadowing due to the effects of a far-away second clos-
est surface (Figure 2 (a)) is avoided by restricting the maxi-
mum bias to the constant zoffset. On the other hand, the bias
will be determined by the midpoint approach if occluder and
shadow receiver are close to each other. Therefore, zoffset can
be set to a large value without loosing the shadow on close-
by objects.

Midpoint shadow maps are prone to self-shadowing arti-
facts at silhouette lines (Figure 2 (b)), and so is dual shadow
mapping with our choice of bias function. Since front faces
and back faces are very close to each other in the vicinity of
a silhouette, the same mean depth value is used for the dual
shadow map as for the midpoint shadow map.

For a solid object that is represented by a closed sur-
face self-shadowing at silhouettes can be avoided by ap-
plying back face culling. In this way, the second closest
surface is no longer the back face of the object but some
front-facing surface further away; the bias function yields
a larger shift and enables the illuminated silhouette region
to pass the shadow test. Back face culling is compatible with
dual shadow maps, whereas it introduces severe artifacts into
the original midpoint approach. Figure 4 demonstrates how
back face culling causes another class of self-unshadowing
aliasing for midpoint shadow mapping. Typically, a region
around a silhouette line of a shadow receiver is affected by
self-unshadowing because an object in the background or—
if there is no background object—the far clipping plane can
shift the midpoint shadow map beyond the depth of the sil-
houette region (Figure 4 (a)). In Figure 4 (b), a variant of this
self-unshadowing aliasing is illustrated. If the surface of a

possible self
unshadowing

possible self
shadowing

(a) (b)

Figure 2: Self-unshadowing (a) and self-shadowing (b)
problems for midpoint shadow maps.

c© The Eurographics Association 2003.



Weiskopf and Ertl / Shadow Mapping Based on Dual Depth Layers

shadow
receiver

constant
bias region

unshadowed

occluder

Figure 3: Shadow mapping with a large constant bias. The
shadow receiver is closer to the occluder than the bias and
thus is erroneously illuminated.

shadow receiver is almost parallel to the light direction, the
midpoint shadow map will change rapidly, i.e., its slope is
large. Due to sampling problems, parts of the receiver may
lie in front of the corresponding sampled depth. This self-
unshadowing aliasing is unpleasant and—for the silhouette
artifacts—occurs quite often. Therefore, back face culling is
not a suitable option for midpoint shadow mapping.

In contrast, our dual shadow mapping approach over-
comes these aliasing problems and thus allows us to employ
back face culling in order to avoid the self-shadowing arti-
facts at silhouette lines (Figure 2 (b)). Moreover, back face
culling (for solid objects) and no culling (for example, for
infinitesimally thin surfaces) can be used in the same scene
without invalidating dual shadow mapping. Besides the dis-
tinction between closed, one-sided surfaces and open, two-
sided surfaces, no other information about the scene is re-
quired. In particular, neither connectivity information nor
assignment to object IDs is needed; a “triangle soup” can
be used as input.

Dual shadow mapping only modifies the construction of
the shadow map. Therefore, it can be combined with most
other improvements of shadow mapping to further reduce
aliasing and enhance image quality. Perspective shadow
mapping12 can be applied to take into account the effects
of the perspective transformation into the eye space during
the sampling of the shadow map. Aliasing problems can be
reduced by adaptive shadow mapping6 or filtering11. If more
information about the structure of the scene is available, the
priority buffer storing object IDs could further increase the
quality of shadow mapping.

5. Implementation on Graphics Hardware

Dual shadow mapping lends itself to an implementation on
graphics hardware and on CPU alike. Therefore, both inter-
active applications and high-quality offline renderers benefit
from this approach. In this section, only an implementation
on graphics hardware is described since it should be straight-

forward to include the modifications into a CPU-based ren-
dering system.

The following discussion is based on the functionality of
state-of-the-art GPUs (graphics processing units). In partic-
ular, we utilize programmable vertex and fragment process-
ing with floating point precision, floating point textures, and
render-to-texture capabilities. Our example implementation
is based on DirectX 9 and was tested on an ATI Radeon
9700. As we build upon the functionality laid out in the spec-
ifications of DirectX 9, our implementation will run on any
future graphics hardware that is conform to DirectX 9.

The depth comparison for dual shadow map from Eq. (1)
can be re-written as

zfrag < zdual(z1,z2) , (3)

with the depth texture

zdual(z1,z2) = z1 + zbias(z1,z2) . (4)

Therefore, the complete shadow mapping algorithm consists
of two main phases. The depth texture zdual(z1,z2) in gener-
ated in the first phase. The second phase is identical to the
original shadow mapping algorithm: the scene is rendered
from the eye point by taking into account the depth compar-
ison (3).

The main problem in phase one is to extract the two clos-
est surfaces as seen from the light source. This can be ac-
complished by a two-pass rendering. In the first pass, the
scene is rendered into the depth buffer, with depth testing
being enabled. Texture coordinates are specified in a way to
represent the depth with respect to the light source, i.e., the
position of a vertex, (x,y,z,w) is re-used as its texture coordi-
nates, (s, t,q,r). A vertex program (vertex shader in the lan-

possible self
unshadowing

back face
culling

unshadowing
possible self
region of

back face
culling

background object

(a) (b)

Figure 4: Self-unshadowing for midpoint shadow mapping
with back face culling.

c© The Eurographics Association 2003.



Weiskopf and Ertl / Shadow Mapping Based on Dual Depth Layers

guage of DirectX) needs only one additional line of code to
output the vertex coordinates as texture coordinates. Via in-
terpolated texture coordinates, the fragment program (pixel
shader in the notation of DirectX) has access to the depth of
the current fragment and writes it directly into a texture with
one floating point channel, i.e., such a texture is used as ren-
der target. Unfortunately, the fragment operation unit has no
read access to the fragment’s depth; therefore, the depth has
to be transmitted from the transform and lighting stage to the
fragment program via texture coordinates. (Therefore, slope-
scale based depth bias, which is supported in DirectX 9 for
z buffer rendering, cannot be used for shadow mapping.)

In the second pass, the scene is rendered into the depth
buffer for a second time, after having cleared the depth
buffer. Once again, a one-channel floating point texture of
the same size is used as render target. Exactly the same scene
as in the first pass—including the aforementioned texture
coordinates—is rendered. In addition, another tuple of tex-
ture coordinates is specified to allow a one-to-one mapping
between rendered fragments and the texels from the texture
generated in the first pass. The fragment program compares
the fragment’s depth z2 to the depth z1 stored in the texture;
if both depth values are equal (up to a very small tolerance
level ε due to inaccuracies in the floating point representa-
tion), the fragment will be discarded. In this way, the fore-
most surface is not rendered in this second pass. Finally, a
third rendering pass combines the two textures for z1 and z2,
evaluates the function zdual(z1,z2) by a fragment program,
and writes the outcome into a render target.

The resulting texture is used as shadow map in phase two.
Here, the scene is rendered from the eye point, with illumi-
nation computations and shadow testing being enabled. Tex-
ture coordinates are computed in a vertex program to repre-
sent the position of the vertex with respect to the light source.
A fragment program compares the fragment’s depth in the
coordinate system of the light source with the depth stored
in the shadow map according to Eq. (3). Depending on the
result of the comparison, the fragment is drawn as shadowed
or unshadowed pixel.

The new functionality introduced by dual shadow map-
ping is completely restricted to phase one. The rendering of
the scene from the eye point in phase two is not modified—
dual shadow maps are transparent to the implementation of
this rendering stage. Therefore, filtering techniques, which
concern only phase two, can be readily combined with dual
shadow maps. We have implemented two variants of per-
centage closer filtering. First, a bilinear interpolation of the
binary results for the four closest depth map texels is real-
ized. Since bilinear percentage closer filtering is not directly
supported in the specifications of DirectX 9, the weights for
bilinear interpolation are explicitly computed in the frag-
ment program by extracting the fractional coordinates within
the respective texture cell. Second, a filtering by a 4×4 jitter

matrix is implemented; the code is based on an ATI shadow
demo2.

6. Results

In this section, some example images are included to demon-
strate the features of dual depth mapping in comparison to
midpoint shadow maps and the approach with constant bias.
All images were generated a PC with ATI Radeon 9700
graphics by using our implementation based on DirectX 9.

Figure 5 shows a simple “L”-shaped object above a green-
ish surface. The scene is illuminated by directional light
from right above. Figure 5 (a) is a high-quality rendering and
serves as a benchmark. In all other images, a heavily under-
sampled shadow texture is used to emphasize possible alias-
ing artifacts. Midpoint shadow mapping without back face
culling, as illustrated in (b), reveals both self-unshadowing
(at the vertical crease) and self-shadowing artifacts (at the
silhouettes as seen from the light source). In image (c),
dual shadow mapping without back face culling avoids self-
unshadowing, but shows the same self-shadowing artifacts
at the silhouettes. If the constant depth bias in the original
shadow mapping approach is chosen too large, surfaces ly-
ing in the shadow can become erroneously illuminated like
the region left to the vertical crease in image (d). By enabling
back face culling, self-shadowing artifacts can be removed
for midpoint shadow mapping (image (e)); however, addi-
tional self-unshadowing in the neighborhood of silhouettes
is introduced. Finally, the combination of dual shadow map-
ping and back face culling for solid objects gives quite con-
vincing results even for heavily undersampled shadow maps,
as it can be seen in (f).

In Figures 6 (d)–(f), bilinear shadow filtering is demon-
strated for the original shadow mapping technique, midpoint
shadow mapping, and dual shadow mapping, respectively.
Corresponding unfiltered images are shown in Figures 6 (a)–
(c). Filtering helps to reduce the visibility of artifacts and
generates more naturally looking soft shadow edges. Never-
theless, self-unshadowing artifacts in the midpoint approach
remain clearly noticeable (on the lower left part of the dou-
ble torus in (b) and (e)).

Figure 7 shows a more realistic image taken from a factory
scene. Percentage closer filtering with a 4×4 jitter matrix is
applied, and a shadow map of acceptable resolution is used.
However, midpoint shadow mapping in image (c) still shows
some self-unshadowing artifacts, e.g., at the left edge of the
wall in the background and around the transmission roles in
the upper right. This artifacts are avoided by dual shadow
mapping in image (d).

Performance measurements for a Windows XP PC with
ATI Radeon 9700 GPU and AMD Athlon XP 2200+ CPU
are given in Table 1. The test scene from Figure 7 with
13,284 triangles and 13,177 vertices was rendered on a
11002 viewport. Performance numbers for a rather small

c© The Eurographics Association 2003.



Weiskopf and Ertl / Shadow Mapping Based on Dual Depth Layers

(a) (b)

(c) (d)

(e) (f)

Figure 5: Comparison of shadow mapping approaches. Directional light comes from right above. Image (a) shows a high-
quality rendering as a benchmark; all other images are based on a heavily undersampled shadow texture to emphasize artifacts.
Image (b) illustrates midpoint shadow mapping without back face culling, (c) shows dual shadow mapping without back face
culling, (d) presents the original shadow mapping with a large constant bias, (e) and (f) show midpoint shadow mapping with
back face culling and dual shadow mapping with back face culling, respectively.

depth texture of 2562 and a large depth texture of 20482 are
included to compare the efficiency of the first phase of the
shadow mapping algorithm. Midpoint and dual shadow map-
ping run at the same speed because their fragment programs

differ only minimally. For large depth textures, these two ap-
proaches show roughly half of the performance of the origi-
nal shadow mapping technique due to the additional render-
ing costs in phase one. For smaller depth textures and / or

c© The Eurographics Association 2003.



Weiskopf and Ertl / Shadow Mapping Based on Dual Depth Layers

(a) (b) (c) (d) (e) (f)

Figure 6: Bilinear shadow filtering. Images (a)–(c) are generated by the original shadow map technique, midpoint shadow
mapping, and dual shadow mapping, respectively. Here, no filtering is applied. Bilinear filtering is combined with the same
three techniques in (d)–(f).

(a) (b)

(c) (d)

Figure 7: Shadow mapping with 4×4 percentage closer filtering for a factory scene. Image (a) shows no shadow, (b) shadow
mapping with a constant bias, (c) midpoint shadow mapping, and (d) dual shadow mapping.

c© The Eurographics Association 2003.



Weiskopf and Ertl / Shadow Mapping Based on Dual Depth Layers

Table 1: Rendering performance in fps.

constant bias midpoint / dual

shadow map size 2562 20482 2562 20482

no shadow 167.5
no filtering 106.2 69.1 85.3 30.6
bilinear filtering 44.8 36.6 40.6 21.9
4×4 filtering 27.2 23.9 25.5 16.6

more sophisticated filtering during phase two, the differ-
ence between the shadow mapping methods becomes much
smaller.

7. Conclusion

We have presented dual shadow mapping, which computes
an adaptive depth bias based on the two closest depth lay-
ers. The bias function takes the minimum of a constant offset
and the half distance between these two depth layers in order
to combine the advantages of a constant bias and midpoint
shadow mapping. Dual shadow mapping handles a collec-
tion of triangles and does not require further information on
the structure of the scene. Furthermore, back face culling for
solid objects can be mixed with non-culled open surfaces in
the same scene to increase the rendering performance and
the robustness of the shadow tests. Finally, our approach
lends itself to a hardware-accelerated implementation for in-
teractive applications, but also is applicable to high-quality
software renderers.

Although the issue of finding an appropriate constant bias
has not been addressed directly, this problem is greatly al-
leviated by dual shadow mapping. In the limit of an infinite
offset, dual shadow mapping converges to the original mid-
point approach and, thus, still provides the acceptable results
of this state-of-the-art technique. Therefore, the offset can
be chosen by taking a value somewhere (or even well) above
the value that would be used for implementations with only a
constant offset. Stated differently, the final results are much
less dependent on this value.

References

1. T. Akenine-Möller and E. Haines. Real-Time Render-
ing. A.K. Peters, Natick, second edition, 2002. 2

2. ATI. Shadow map demo. http://www.ati.com/devel-
oper/samples/dx9/ShadowMap.html, 2003. 5

3. F. C. Crow. Shadow algorithms for computer graph-
ics. Computer Graphics (SIGGRAPH ’77 Proceed-
ings), 11(2):242–248, 1977. 1

4. C. Everitt. Interactive order-independent transparency.
White paper, nVIDIA, 2002. 2

5. C. Everitt, A. Rege, and C. Cebenoyan. Hardware
shadow mapping. White paper, nVIDIA, 2001. 2

6. R. Fernando, S. Fernandez, K. Bala, and D. P. Green-
berg. Adaptive shadow maps. In SIGGRAPH 2001
Conference Proceedings, pages 387–390, 2001. 2, 4

7. J. C. Hourcade and A. Nicolas. Algorithms for an-
tialiased cast shadows. Computers and Graphics,
9(3):259–265, 1985. 2

8. G. S. Hubona, P. N. Wheeler, G. W. Shirah, and
M. Brandt. The relative contributions of stereo, light-
ing, and background scenes in promoting 3D depth vi-
sualization. ACM Transactions on Computer-Human
Interaction, 6(3):214–242, Sept. 1999. 1

9. T. Lokovic and E. Veach. Deep shadow maps. In
SIGGRAPH 2000 Conference Proceedings, pages 385–
392, 2000. 2

10. J. S. Montrym, D. R. Baum, D. L. Dignam, and C. J.
Migdal. InfiniteReality: A real-time graphics system.
In SIGGRAPH 97 Conference Proceedings, pages 293–
302, 1997. 1

11. W. T. Reeves, D. H. Salesin, and R. L. Cook. Render-
ing antialiased shadows with depth maps. Computer
Graphics (SIGGRAPH ’87 Proceedings), 21(4):283–
291, 1987. 2, 3, 4

12. M. Stamminger and G. Drettakis. Perspective shadow
maps. ACM Transactions on Graphics, 21(3):557–562,
July 2002. 2, 4

13. K. Tadamura, X. Qin, G. Jiao, and E. Nakamae. Ren-
dering optimal solar shadows with plural sunlight depth
buffers. The Visual Computer, 17(2):76–90, 2001. 2

14. J. Torborg and J. Kajiya. Talisman: Commodity real-
time 3D graphics for the PC. In SIGGRAPH 96 Con-
ference Proceedings, pages 353–364, 1996. 2

15. Y. Wang and S. Molnar. Second-depth shadow map-
ping. Technical Report TR94-019, Department of Com-
puter Science, University of North Carolina - Chapel
Hill, Dec. 1994. 2

16. L. Williams. Casting curved shadows on curved sur-
faces. Computer Graphics (SIGGRAPH ’78 Proceed-
ings), 12(3):270–274, 1978. 1

17. A. Woo. The shadow depth map revisited. In D. Kirk,
editor, Graphics Gems III, pages 338–342. AP Profes-
sional, Boston, 1992. 2

18. A. Woo, P. Poulin, and A. Fournier. A survey of shadow
algorithms. IEEE Computer Graphics and Applica-
tions, 10(6):13–32, Nov. 1990. 1, 2

c© The Eurographics Association 2003.


