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Make an Artificial Impulse

Toshiko Iguchi, Tetsuya Kodama and Hiroshi Noborio

Division of Information and Computer Science
Graduate School of Engineering
Osaka Electro Communication University
Hatsu-Cho 18-8, Neyagawa 572-8530, Japan

Abstract

Baraff’'s and Mirtich’s approaches are well known so as to generate force and impulsive force artificially at
collision between rigid bodies. However, both cannot be unfortunately applied for a practical use such as complex
dynamic animation and simple haptic rendering. The reason is as follows: Baraff's approach deals with many
forces at multiple contacts, but does not always calculate a solution under static and dynamic frictions. Moreover,
since almost natural contact phenomena should be operated by not force but impulse (a sequence of forces)
supervised by time, his approach cannot manage such practical aspects. On the other hand, Mirtich’s approach
completely neglects time, e.g., the interval of collision, and consequently make only an impulsive force (does
not generate a true impulse as force distribution). Consequently, they cannot be applicable to dynamic animation
including simultaneous multiple contacts and haptic rendering. For this reason, we propose a new approach based
upon integration of an arbitrarily chosen force distribution over a finite time interval by time. Also, we discuss a
new method to calibrate completely the force distribution and uncertain parameters required in our new approach.
By the deep calibration, the accuracy of linear tangential and angular impulses in our approach is superior to
that of these impulsive forces in Mirtich’s approach.

1. Introduction quently in his approach, we cannot feel any artificial impulse
by a haptic device, and we cannot generate complex dy-
namic animation including simultaneous multiple contacts.
Also, Mirtich’s approach calculates linear tangential and an-
gular impulsive forces from a vertical impulsive force with-
gut considering what happen during collision deeply. Espe-
cially, Coulomb’s static and dynamic friction laws are un-
fortunately confused for determining whether encountered
bodies are sticking or sliding each other. For this reason,
linear tangential and angular impulsive forces made in his
approach are not accurate. Finally, Kawachi mixed Baraff's
force approach with multiple contacts and Mirtich’s impul-
sive force approach with the unique contact in his 2-D and 3-
D approacheg,”. He straightforwardly mixed Mirtich’s and
Baraff's approaches without eliminating their disadvantages.
Consequently, his approach still keeps their drawbacks. As
a result, we cannot feel any impulse (a sequence of forces)
by haptic, and also we cannot generate any dynamic anima-
tion whose linear and angular velocities of bodies after each

The physical-based approach, e.g., contact force/impulsive
force calculation, has been focused in the last decade for
many applications such as dynamic animation and haptic
control. This theoretical area was revisited by Bat&ffand

then have been aggressively studied by many researchers a
Mirtich, Kawachi and so oA,4,5,6,7.

Baraff presented a simple and fast algorithm for calcu-
lating forces at multiple contacts between rigid bodies by
formulating relationship between forces and relative accel-
erations as LCP (Linear Complementarily ProblémYhe
algorithm is based on Dantzig’s algorithm for solving LCP.
However, his approach does not always get a solution un-
der not only static friction but also dynamic friction. In suc-
cession, Mirtich presented a smart algorithm for calculating
an impulsive force independing tini¢,>. His assumption is
that an impulse is generally a very large force occurring over
a very small time and that it is most of the time considered
as infinitesimal. Therefore, his approach does not generate a
real impulse (force distribution) controlled by time. Conse-
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collision are correct against a real world in such famous ap- encountered bodies. First of all, since X, Y and Z compo-
proaches. nentspx, py and pz of an assumed impulsge are differen-

To overcome their problems, we firstly adopt a more gen- tiated by Z componenp;, we cannot deal with times.g.,
eral definition ofimpulse, which is the integral of a force  time interval during collision. Moreover, because of the dif-
over a finite time interval in this paper. In this more general ferentiation, vertical forcgy is always fixed as one and con-
sense, our impulse extremely differs frampulsive force sequently its accumulated impulsive forpgincreases lin-
frequently referred in the CG community as impulse. Sec- early (Fig.1(a)). Also, since linear tangential forqgsand
ondly, we propose a new approach to compute linear tangen- pg, are dynamic frictions op} along X and Y-axes, their in-
tial and angular impulses from a linear vertical impulse arti- tegrated impulsive forcesc andpy exactly or approximately
ficially chosen as force distribution based on time, namely increase linearly. It depends on dimension, shape and mate-
Gaussian. The new approach consists of Newton's force rial of bodies. For this reason, we cannot obtain any impulse
equation, Euler's moment equation, Coulomb’s static fric- py, py or p; as force distributions. Furthermore, Mirtich does
tion inequality and dynamic friction equation in order to ex-  not regard any internal force of a body during collision at all.
change force and moment between bodies during collision. He regards only a given external forpgand its calculated
Furthermore, various parameters can be estimated thanks toexternal friction forceg} andpy. These are defective points
an experimental setup. In order to calibrate a linear vertical to calculate practical impulses (force distributions) precisely.
impulse, parameters of our new approach, i.e., dynamic fric-
tion coefficientuy, the maximum coefficient of static friction %}% %% }.{ %% 7%. }%
s, reflection coefficienE between encountered bodies in a i
many different aspects, we measure many force/moment dis-

tributions between bodies by 6-degrees-of-freedom (DOF) total

force/moment sensor during collision, whose sampling time Pme

is 125 [ud, we measure many linear/angular acceleration se- I Y - .
quences of a 2-D body by two acceleration scales during v=0  YmcP V1R to tme i
collision, whose sampling time is 2Qi§, and we measure (@) (b)

Figure 1: Compression phas& and restitution phas® between
two bodies during collision (a) in Mirtich’s classic approach and
(b) in our new approach.

many linear/angular velocities before and after collision by
the high-speed camera, whose sampling time is 1 [ms].

The paper is organized as follows: Section 2 describes our
physical-based approach based on Newton’s force equation, Tq gvercome such problems, we propose a new approach.

Euler's moment equation, and Coulomb’s dynamic friction - The differences against Mirtich's approach are sequentially
equation and static friction inequality. They run during col- gescribed as follows:

lision to exchange force and moment between encountered

bodies. The quadratic differential equations are approxi- 1. Each external forces(t) is sequentially given in an
mately solved by the fourth-ordered Runge-Kutta method. artificial impulse (force distribution)p,(t) in time as il-

In section 3, we explain how to design a linear vertical im- lustrated in Fig.1(b). The artificial impulspz(t) is pre-
pulse and also how to calibrate the impulse and unknown cisely calibrated from real distributions measured by 6 DOF
parameters in our approach so as to make linear tangentialforce/moment sensor

and angular impulses. If encountered bodies are affected by
precise linear/angular impulses (linear/angular momentum
variations), their linear/angular velocities after collision can
be exactly generated from those before collision in dynamic
animation. Also, practical force distribution can be felt by a 3. Coulomb’s static friction inequality under present
human operator via some haptic during collision. In section internal forces and moments of encountered bodies judges
4, we will give some experimental works to identify internal  whether they are sliding or sticking.

force/moment of a body used in Newton'’s force and Euler's
moment equations from its linear/angular velocities. Then in
section 5, we compare linear/angular velocities after colli-
sion, which are made in a real experiment, Mirtich’s classic
approach, and our new approach. As a result, we ascertain
that our new approach is always better than Mirtich’s one
for several contact trials. Finally in section 6, we present a
few concluding remarks and future extensions.

2. Our New Impulse-Based Approach

Mirtich's approach is an approximated approach to calculate 5. By integrating all the external forces(t), p(t) and
linear tangential impulsive forces from a linear vertical one, pj(t), we finally obtain three linear impulses(t), py(t) and
which are distinguished by the contact surface between two p(t) and also three angular impulses.

2. A set of internal force/moment of a body before colli-
sion is determined by a set of linear/angular velocities of the
body before collision.

4. If and only if two bodies are slidingCoulomb’s dy-
namic friction equation calculates their dynamic friction
forces as tangential external forcpigt) and pi(t). Other-
wise, no dynamic friction force exists, i.gj(t) = py(t) =0.
Then inNewton’s force equation, px(t), py(t) andp;(t) are
added into present internal forces. SynchronousBuiter’s
moment equation, external moments are added into present
internal moments.
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encountered bodies in the Coulomb’s static friction inequal-
ity and dynamic friction equation. In general, the bodies
are sliding or sticking during collision. First of all, we con-
sider thelaw of action and reaction. An internal force of

a body is to be the action force of its encountered body,
; and consequently the former body is received by the same
Figure2: Collision between two bodies. reaction force from the latter body. For each body, a verti-
cal reaction force equals to its vertical internal force, whose
directions are opposite. The vertical reaction force leads a

m; :mass of an object i{body number)

% linear velocity of an object friction force, whose direction are opposite to a tangential
6; :angular velocity of an object P H i i id-
fi - contact point relative to ¢.0.m. action force. For this reason, the switching between slid
Ji :mass matrix ing and sticking modes are determined by the balance of
ti | 2 1 . : F

D sty of contat oo a tangential action force and a friction force made from
ug; :relative angular velocity of contact point a vertical action force. The vertical and tangential inter-
>:<b: [*bxﬂ%byw*bﬂi :Iinearvelocity before ct.)ll.ision nal fOfCGSF(t) _ [Fx(t), Fy(t),Fz(t)]T and momenN(t) _
_>(a:[_)<ax,)_<ay,)_<az] : linear velocity after collision T M ish h f

8p = [Bbx, Opy. (_-)bZ]T : angular velocity before collision [NX(t)v NY(t)> Nl(t)] are dIStIngUIS ed byt € contact surface
6a = [Bax. Bay, 82z : angular velocity after collision of encountered bodies. Here, the balance of tangential action

and friction forces is calculated in Coulomb’s static friction

The linear velocity variation at a contact point of bady ¢ ! > nRE et o
inequality. The maximum of static friction coefficient is de-

during collision is calculated by linear and angular relative
velocity variations of encountered bodies. This relationship Noted ags.
is expressed in the equation (1) under Newton-Euler equa- > >
tions. Consequently as shown in the equation (2), the linear VA2 + H(O)] < bl Fa(t) | (7)
velocity variation at the contact point is converted from a Note that calculation of the initial internal fordg0) and
vertical impulse via the matrik;. momentN(0) before collision is described in the section 4.
. : Furthermore, we always consider internal moment of the
Bui(t) = ui(t) —ui(0) = A%i(t) + A8i(t) x1i- (1) body in the above balancE (t) = [Fux(t), Fuy(t), FnAt)] "

Au;(t) = [i| —Fi37 () = Mip(t). (2) is the force converted from the momeni(t) =
[N(£), Ny (£),Nz(t)] T by N(t) = xFn(t), = I[rryre"
| is the 3x 3 identity matrix,f; is the canonical X 3 Especially in case of 2-D coordinate system, we give
skew-symmetric matrix corresponding tg andM is the rx =ry =0 andFRy(t) = 0. Therefore,
3 x 3 matrix dependent only upon the masses and mass ma- Fua(t) = Fay(t) = 0, Fx(t) = Ny(t)/r

trices (inertia tensor) of colliding bodies, and the location of

contact point relative to the mass center. If we add this affection into the equation (7), we obtain the

following equation concerning to static friction.
The angular velocity variation at a contact point of body
i during collision is calculated by only the angular relative I\/(Fx(t) T Fax()2+ (R ()2 < Ws|Fz(t) | (8)
velocity variation of encountered bodies. This relationship
is expressed in the equation (3) under Euler’s equation. Con- This inequality is satisfied, we move to titicking Mode
sequently as shown in the equation (4), the angular velocity (STM), otherwise, we move to ttaliding Mode(SLM).
variation at the contact point is converted from a vertical im-
pulse via the matris g;.

Sliding mode (SLM) If the inequality (8) is not main-
. tained, a relative velocityx(t) 7 0 oruy(t) # 0 is obtained.
Augi(t) = ugi(t) — ugi(0) = A6;(t). 3) In this case, tangential componepii(t) or pj(t) and nor-
Augi(t) = [37Yi]p(t) = Mgip(t). (4) mal componenp(t) completely appear. Three components
px(t), py(t) andpz(t) of impulse are calculated by integrat-
Two kinds of matrices/; andMg; are only depending on  ing pj(t), pj(t) and pj(t) during collision. The tangential
dimension, shape and material, and therefore they are con-external forces(t) and p§,(t) are always calculated from a

stant during collision. By mixing the matricés; andMs;i, vertical external forcepy(t) of a given impulsep(t) by the
we can geM and equation (5). Coulomb’s dynamic friction equation. The dynamic friction
coefficient is denoted 3.
Au(t) = Mp(t). (5) B Uy (t) -
U (t) W Tz P
SinceM is constant over the entire collision, we can dif- ug,(t) =M g uy(t) ) | - (9)

ferentiate equation (5) with respect to time obtain Up(t) sz(t)/""uyz(t) z

u'(t) =Mp'(0) (©) P=(t)

Moreover, we always process internal forces/moments of ~ The integration is done by the fourth-order Runge-Kutta
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method. The sampling time for integrating force components
px(t), py(t), p2(t) and their moments is the same against the
sampling time, i.e., 20g of two acceleration scales to de-

termine internal force/moment components.

Sticking mode (STM)  If the inequality (8) is kept, rel-
ative velocities are set as zero, ig(t) = 0 anduy(t) = 0.
In this case, because of (9), tangential compongk(ts and
py(t) disappear. Therefore, only the normal comporp(t)

is integrated for calculating an artificial impulpg(t).

The internal force/moment is always renewed by the ex-
ternal forcep’(t) = [pk(t), pj(t), px(t)]" and moment. As a
result, the internal forcg (t) = [Fx(t), Fy(t), Fz(t)]" and mo-
mentN(t) = [Nx(t), Ny(t), Nz(t)]" are always revised during
collision per the sampling time 2Q§ as follows:

F(t+1)=F(t)+p'(t), N(t+1)=N(t)+rxp'(t). (10

3. Construction of Vertical Artificial Impulse
In general, an arbitrary impulse can be represented as a nor-
mal distribution described in Fig.1(b). Therefore, we firstly
measure many real impulses by 6 DOF force/moment sensor
to investigate its shape including time interval and height.
Consequently, the real impulse can be formulated by Gaus-
sian. For this reason, we consider how to generate its approx-
imated artificial impulse by Gaussian.
3.1. Initializing Uncertain ParematersE, s and |y
In our approach, reflection coefficietbetween two bodies
is used for generating an artificial impulse whose direction
is vertical to the contact surface between encountered bod-
ies. Then using two friction coefficiengs andpy, we calcu-
late artificial impulses whose directions are tangential to the
given vertical impulse. These parameters are invariable as
long as dimension, material and shape of encountered bod-
ies are the same.

The initial values of coefficientgy andys are detected by
the following simple experiments. Namely, an initj@{ is
calculated byy = R/Fn. i andF, are magnitudes of tan-
gential and normal forces on the contact surface of encoun-
tered bodies during slidindgz andF, are directly measured
by two spring balances. In addition, an initia is calcu-
lated byps = Ftmax/Fn. Ftmax is measured as the maximum
magnitude of tangential force when two encountered bodies
start to move on the contact surface. In general, the sliding is
more stable than the switching. For this reason, we suppose
the initial value ofpy is more precise than that g§. Thus,

we calibrateus andyy in this order.
Secondly, a lot of experimental pairs of normal compo-

nents of linear velocitiesxgz andxy;) before and after col-
lision can be precisely measured by the high speed cam-
era. Therefore, reflection coefficieBt= —Xaz/X,, between
two bodies is independently calibrated aSZB by the least
square method minimizing the valiig + EX,,)? under a
lot of experimental pairs.
3.2. Analysisof an Impulse (Force Distribution)

M easured by 6 DOF Force/M oment Sensor
In order to identify shape (interval, height, and so on) of
many real impulses, we measure a lot of collisions between

puck and wall by 6 DOF force/moment sensor (Fig.3 and
4). First of all, impulse area equals to momentum variation
such aspz; = M(Xaz — Xpz) = —M(1+ E)Xy,. For this reason,
area of vertical impulse; is theoretically proportional to a
vertical velocityx,, before collision. This is experimentally
ascertained (Fig.4(a)). Furthermore, the maximum force of
vertical impulsep; is experimentally proportional to a verti-
cal velocityx,, before collision (Fig.4(a)). Finally, as illus-
trated in Fig.4(b), we can experimentally understand colli-
sion intervals are the same in time.

On the observation, the height of force distribution
(the vertical maximum forc@,maxof impulse) can be artifi-
cially created from a vertical velocity,, before collision.
After gathering many pairs of maximum forqemay and
velocity X,, before collision, we calibrate a constant value
S= Pymay/Xoz Finally, we automatically calculate the height
H asH = s- Xy,

2.5 Ar—
— artificial
2
15 real
s 1 &)
8 05
s T~ ‘

0

0 216 432 648 864 6 DOF force/moment sensor

(a) time [mg (b)
Figure 3: (a) Artificial and real impulses (force distributions) be-
tween wall and puck. In case of a collision, the difference between
areas of two impulses is evaluated as 0.0035203.000013 [kgm/s
- s]. (b) Many collision impulses are measured by 6 DOF
force/moment sensor.

W height [N]
@input velocity [m/s]
Oarea [Ns]

[N, m/s, Ns]

1234567 89 1ot 123456789101l
(@ (b)
Figure 4: Collision between wall and puck: (a) The proportional
relation between height and input velocity and area of each im-
pulse measured by the 6 DOF force/moment sensor. (b) Collision
intervals are almost the same, which are measured by the 6 DOF
force/moment sensor.

Under these properties, we mention how to generate arti-
ficially vertical force distribution (impulsep; from a verti-
cal velocityxy, before collision. After recognizing reflection
coefficientE, interval and height of impulse (force distri-
bution), we combine different distributions as left and right
parts of a vertical artificial impulse. The interval ratio of
compression and restitution phases is theoretically defined
as 1 :E. The former is relatively gently-sloping and the lat-
ter is relatively steep slope.

As shown in Fig.3(a), left and right distributions are sim-
ilar to the regular distribution. For this reason, we use the
mixture equation (11) of Gauss’s normal distribution and
standard normal distributioro is the dispersion and is
the chance variabléd is already calculated as the height of
force distribution.

(© The Eurographics Association 2003.
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y _—a?
pz(t) =He™ 27 (11)

If the heightH is completely fixed in the mixture equation
(112), the distribution interval is expanded as the distribution
o increases. For this reason, the smaller [larger] the parame-
tero is, the larger [smaller] the slope of distribution is. From
many kinds of experimental impulses, we can see that the
slope in the compression phaBds larger than that in the
restitution phasé as illustrated in Fig.1(b). For this reason,
we keep the relationshipp > op to build an artificial im-
pulse.

As illustrated in Fig.3(a), shape of an artificial impulse is
similar to that of its real impulse. This similarity is useful to
feel an artificial impulse by some haptic (Mirtich’s approach
cannot make any force distribution).

3.3. Calibration Method of an Artificial Impulse and
Uncertain Parametersin Our Impulse-Based
Approach

Until now, we design a linear vertical impulge artificially,
and then calculate linear tangential impulseand angu-
lar impulsepgy artificially. In this paragraph, we propose a
method to calibrat&, s, Lg and finally vertical impulsep;
(force distribution) by minimizing differences between ar-
tificially calculated linear and angular impulsps px, Ps,
and experimental linear momentum variation&xz, mAxy,
angular momentum variatiai\6y, respectively. In order to
calculateAxz, Axx andABy, we experimentally measure lin-
ear velocitiesXax and Xaz, angular velocity@ay after colli-
sion, and also linear velocitiegy andXy,, angular velocity
Opy before collision.

In order to explain our calibration method, we give a col-
lision example between two bodies illustrated in Fig.5.

Step 1 Calibrating reflection coefficient E (Agreeing a
calculated vertical impulse pz(t) with its experi-
mental impulse):

We coincide calculated vertical impulg®(t) with

its experimental real impulse by changing an ini-
tial E. The area of vertical impuls@,(t) can be
controlled by reflection coefficier, i.e., pz(t)
mMAX; = —m(1 + E)Xp,. For this reasonE is pre-
cisely calibrated by area coincidence of virtual and
real vertical impulses (Fig.5(a),(b)).

Calibrating static and dynamic friction coeffi-
cients s and Py (Adjusting calculated tangential
impulse px(t)):

We calibrateys and thenyy because the former ini-
tial value is not always precise than the latter one.
According to the equation (8), the larger theis,
the larger the number of sticking mode is. In this
case, the tangential impulgg(t) decreases because
each forcepy(t) is not integrated in the sticking
mode (STM) (Fig.5(b),(c)). Moreover, according to
the equation (9), the larger thg is, the larger the
tangential impulsepx(t). The reason is that each

Step 2

(© The Eurographics Association 2003.

force py(t) integrated in the sliding mode (SLM) be-
comes larger (Fig.5(b),(c)). For this reaspg,and
Lg are precisely calibrated by the coincidence of ar-
eas of virtual and real tangential impulses.
Calibrating a calculated vertical impulse p(t)
(distribution of forces pj(t)):
If we slightly change the vertical impulse in the
Gaussian distribution initially given in the paragraph
3.2, we simultaneously adjust vertical and tangential
impulses (Fig.5(c),(d)).

In such a scenario, we systematically and flexibly cali-
brateE, ps, g and vertical impulse (force distribution) in
this order.

Step 3

<example> . -
experimental result (momentum variation)

M calculated result (impulse)
A contact point

(© (d)
j l j l Pz
*px X

Figure5: (a) Aninitial state. (b) A state after calibrating reflection
coefficient E (after adjusting the vertical impulsgipdependently).
(c) A state after calibrating two kinds of friction coefficientsgmd
Mg (after adjusting the tangential impulse mdependently). (d) A
state after calibrating force distribution of vertical impulse (after
calibrating vertical and tangential impulses simultaneously).

As contrasted with this, we calibrate the area of vertical
impulse (momentum variation) only by changiBgand cal-
ibrate the areas of tangential impulses only by changirig
Mirtich’s approach. His approach completely neglects to ex-
change force and moment between encountered bodies dur-
ing collision, and also neglects to calibrate vertical impulse
(force distribution) and static friction coefficieps. For this
reason, we cannot obtain any precise tangential impulsive
force and impulsive moment.

4. Calculation of Initial Internal Force and Moment

First of all, we evaluate a sequence of accelerations mea-
sured by each acceleration scale. For this purpose, we lo-
cate two acceleration scales on a link of robotic manipula-
tor. The manipulator equips precise encoders in two motors.
Therefore, by calculating direct kinematics based on mea-
sured joint angles, we can obtain exact positions of scales on
the link. On the other hand, by integrating accelerations of
two scales from their initial positions, we independently cap-
ture positions of the scales. Finally, by comparing two posi-
tions measured by joint encoders and acceleration scales, we
ascertain that a sequence of accelerations measured by each
acceleration scale has high precision.

Secondly, we calculate linear and angular velocities of a
puck measured by the two accelerations. In our experiment,
we use puck, mallet, and wall whose materials are plastic.
Therefore, we consider only a collision between objects with
the same material. The weight, height and radius of puck are
8[g], 2.0 [mm] and 32.4 [mm], respectively. Finally, we in-
troduce correspondences between internal force/moment of
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a puck and linear/angular velocities of the puck before col- 8451 gi

lision. The equations are parameterized by the weaigaihd 03 03

the radiug of a puck, and a sampling tinf& of integration 0.2 02 \
from an impulse to its impulsive force. 0.1 \\ 0.1 \
4.1. Evaluation of Acceleration Precision Measured by 0 o o0s o4 [m(]; ] 0 o o2  oa L

the Acceleration Scales

a b

In this paragraph, we experimentally evaluate acceleration Figure 7: The ‘gxz’efime”t?" results. (a) A sgquence of positions
precision of each scale. First of all, we allocate two acceler- C2/culated by robot kinematics using angles measured by joint en-
ation scales on a link of the direct drive (DD) robot arm. By COd.erS' (b).A sequence of positions CaICUI.a ted by integrating accel-
. . . . . erations twice captured from the acceleration scales.
integrating their accelerations twice, we can calculate two
positions located at the scales. Then we compare the posi-
tions with their corresponding ones measured under robot 4.3. Initial Internal Force and Moment Measured by 6
kinematics and motor angles. DOF Force/Moment Sensor and High Speed

In order to calculate a position of an acceleration scale Camera
(PCB Piezotronics Co.) in the real-time manner, we locate After a stopping puck is pushed by a mullet, we obtain its
the scale on a robot link. First of all, each scale always cap- final internal force/moment of the puck by summing all the
tures X, Y, and Z accelerations at an arbitrary position in the external forces/moments acting on the puck. Firstly, we mea-
sampling time 20|id. By processing successive accelera- sure and summarize a sequence of internal forces and mo-
tions in a low-pass filter, we can remove their noises. Sec- ments of a puck from its linear and angular accelerations
ondly, we integrate a sequence of accelerations two times measured by the scales (whose sampling time is|@) [
S0 as to obtain a sequence of positions. In order to check via the Newton-Euler equations, and synchronously mea-
the position accuracy, we use a direct-drive (DD) robot arm sure and summarize a sequence of external forces and mo-

(Shinmeiwa Co.) illustrated in Fig.6(a).

Yo

I1

Xi
O~ :motor joint
m :accelerometers

(b)
Figure 6: (a) A photo of DD arm with two acceleration scales
described by circles. (b) A figure of robot kinematics with the scales.

o

By setting two acceleration scales on a robot link shown in
Fig.6(b), we measure sequences of their positions. In order
to evaluate precision of each position, we compare that with
its accurate position calculated by the direct kinematics, e.g.,
x=11c0901) + 120961 +62),y =11sin(01) + l2sin(B1 +
6,) based on motor angles acquired from joint encoders. The
robot arm has two joints whose angkesand@,. The res-
olution is denoted as 36@'’ = 0.002747 [deg] (17bit). In
this way, we can calculate X and Y coordinates of the ac-
celeration scales located on the robot arm. In Fig.7(a),(b)
we give X and Y coordinates measured from joint encoders

and acceleration scales, respectively. The average errors are

bounded by 1.3111jm along X axis and 0.987([m along
Y axis.

4.2. Linear/Angular Accelerations of a Puck Measured
by Two Acceleration Scales

If a circular puck has linear acceleratiarafid angular ac-
celeration®, two acceleration scales, and x> has linear
accelerations;"'= X — Xre andXy = X+ Xre. If the distance
from the gravity center of puck to each acceleration scale
is r, the acceleration of each scale is denotedqby:"ér.
Consequentlyx is calculated by(X; + %2)/2 and alsd is
calculated by(X; — %) /2r.

ments between puck and mallet by the force/moment sen-
sor (whose sampling time is 12f9). After comparing two
kinds of sequences with each other, we understand the for-
mer is better than the latter because of sampling time. For
this reason, in our experiment, we obtain final linear/angular
velocities by multiplying and summing all linear/angular ac-
celerations and sampling time. Synchronously, we get lin-
ear/angular forces by Newton equatier= mx and Euler’s
equatiorN = J8, and then obtain final internal linear/angular
forces by summing all the calculated linear/angular forces.
Note that them is measured by weight balance and inertia
matrix J is calculated by density and volume of the puck.

e The internal forceF; and moment\; of the puck can
be calculated by the sum of forces/moments calculated
from linear/angular accelerations under the Newton-Euler
equations. The accelerations are measured by two accel-
eration scales per a given sampling tifst¢= 20[ug).

F(0) = iia, N(0) = iiwi

Therefore, we can identify initial internal forég0) and
momentN(0) of a puck which correspond to linear and an-
ular velocitiesx(0) and6(0) before collision.

X(O):iisqm , F(O):miixi

If m=0.008 [kg] andAt = 0.00002 [second] are substi-
tuted, we obtain the corresponding equation from an initial
linear velocity to its internal force.

(12

9
(13)

F(0) = % — 4004(0) (14
6(0) = _iéim , N(0) = J_iéi (15)

(© The Eurographics Association 2003.
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If m= 0.008 [kg] andAt = 0.00002 [second]; = 0.0324
[m] are substituted, we obtain the corresponding equation
from an initial angular velocity to its internal moment.

N(0) :J%?) = % rz%?) =0.2099%(0) (16
Avva |
i &
B> . .
@ (b) (c)

Figure 8: The relation between acceleration and force, and that
between angular acceleration and moment are synchronously mea-
sured by the acceleration scales and 6 DOF force/moment sensor.
(a) A: 6 DOF force/moment sensor, B: acceleration scale. (b) mea-
suring linear acceleration. (c) measuring angular acceleration.

5. Compar ative Results Between Mirtich’sand Our
Approaches

In this section, we firstly evaluate precision of linear and an-
gular velocities before and after collision, which are mea-

sured by the high speed camera. Then, under experimental

pairs of velocities before and after collision, we secondly
evaluate our algorithm’s superiority against Mitrich’s algo-
rithm concerning to accuracy of linear/angular impulses (lin-
ear/angular velocities after collision). In this experiment, we
adopt an air hokey game that a human strikes a puck by a
mallet. In our hokey table, the puck moves with constant lin-
ear/angular velocities because of no friction.

5.1. ldentification of Momentum Variations (Impulse
Areas) Before and After Collision

In our research, we use the color camera MotionScope PCI
1000sc (REDLAKE MASD Co.). The image resolutions are
480x 420~ 240x 210, sampling time is 20 [ms} 1 [ms],

and shatter speed is~1 20 times smaller than Ehe rate.

e
1y><1)

(2x@ j+
e

@ : match pattern
® : detected point(red)
i ® : detected point(green)

(CY (b) ©
Figure 9: (a),(b) A collision between two bodies is captured by
the high speed camera, which are running in the air hockey table
without any friction. (c) The position and orientation identification
by color image processing based on two landmarks.

The feature circles are colored as red and green. In or-
der to identify each feature circle by its color, we nor-
malizeR,G,B asr = R/(R+G+B), g=G/(R+G+B),
b=B/(R+ G+ B). In our image processing, we are always
seeking for each feature circle by color and size, and conse-
quently calculate the center of gravity, e.t,z) for red
feature. If the number of feature circles is two, we use red
and green for processing stability (Fig.9(c)). The X and Z
coordinates andyc) of body center can be calculated by
Xc = (Xr +Xg)/2 andz; = (z + zg) /2. In addition, the orien-
tation of body is calculated amrctan((xr — xg)/(z — Zg)).

(© The Eurographics Association 2003.

After that, linear velocity of the body is calculated by divid-
ing the distance of neighbor center points by 1 [ms]. Also,
angular velocity of the body is calculated by dividing the
difference between neighbor orientation angles by 1 [ms]. A
puck is floating on a table, which is pushed by an air. There-
fore, we need not consider any friction, and therefore we can
see no linear and angular accelerations (Fig.10).

g 100 )

& 80 3 80 angular acceleration

€ position °

g clerati g %0 lar velocity/  angle

£ 4 eration 4 40 angular velocit

- velocity o

E 20 L o 20

- L)
0 =======t========= B () ==A======gF=====
20 % 20 40 60 80 20 b 20 49/ 60 80

time[ms] timg[ms]
Figure 10: (a) Each moving object has constant velocity and has
no acceleration. (b) Each has constant angular velocity and has no

angular acceleration.

5.2. Comparison Between Linear and Angular

Velocities M easured by Acceleration Scales and

High Speed Camera
As mentioned in the last paragraph, we measure lin-
ear/angular velocities of a puck by the high speed camera.
Even though a puck moves a long distance, we can get its
linear/angular velocities by this non-contact measurement.
In this paragraph, we check precision of the velocities as
follows: The sampling time (204 s]) of the scale is fifty
times smaller than that (1 [ms]) of the high speed camera.
Therefore, the acceleration scale is better than the high speed
camera to measure the velocities. Needless to say, since two
scales on a pack are connected to PC by cables, the puck
should move a short distance without considering their ten-
sions.

By locating two scales on a puck (Fig.8), we firstly mea-
sure linear/angular accelerations and then linear/angular ve-
locities by integrating the accelerations. Then, we com-
pare the linear and angular velocities with correspond-
ing velocities measured and calculated by the high speed
camera. The maximum difference of linear velocities is
bounded as.098m/s], and the maximum difference of an-
gular velocities is limited as.@15rad/s]. These are small
enough against linear and angular error808m/s and
12.352rad/s| between Mirtich’s and our approaches.

5.3. Comparative Resultsin Mirtich’sand Our
Approaches

In general, linear impulsepx and p; or angular impulse
Pgy correspond to linear momentum variatiomaxy and
mAXz or angular momentum variatiodABy theoretically.
Also, linear momentum variations (e.gqnAxx) are deter-
mined by variation between linear velocities (exgy and
Xax) before and after collision, and angular momentum vari-
ation JABy is determined by variation between angular ve-
locities 6y andBay before and after collision. For these rea-
sons, if linear/angular velocities before collision are given,
linear/angular velocities after collision can be controlled by
linear and angular impulses (momentum variations) in dy-
namic animation.
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First of all, we describe experimental results in ten trials. Table 1: Real collision between puck and wall: linear and angu-
Table 1 illustrates a set of input data as linear/angular veloc- lar velocities &, and ©y) before collision, and internal force and
ities and their internal force/moment before collision, i.e., moment(0) and N(0)) calibrated by the linear and angular ve-
Xox» Xoz: Obys Fxs Fz andNy. As contrasted with this, Table  locities, respectively.

2 shows a set of output data as linear/angular velocities, i.e., Xox Xoz Oby Fx F Ny
Xax, Xaz andOay after collision, and linear/angular momen- wal ms ms  rads N N N-m
tum variationsmAxx, mAxz, JABy.

1 0.909 -0.682 0.000 363.60 -272.80 0.0000

Secondly, we illustrate artificial results for the trials by 2 113 -1136 40221  830.87  -454.40  8.4444
o, : A 3 1.364 -1.705 30.984 835.61 -682.00 6.5050
Mltrlch s and our apprpaches. Table 3 de_s_crlbes a set c_Jf_er- 4 1501 1818 0000 63640 72720  0.0000
tich’s output data as linear/angular velocities after collision, 5 2045 -2.045 0000 81800  -81800  0.0000
i.e.,Xax, Xaz, Bay, and vertical/tangential impulses, i.px, pz 6 1250 2273 -3967 46287  -909.20  -0.8329
7 1.932 -2.614 -7.126 706.10 -1045.60 -1.4961

andpgy. On the other hand, Table 4 shows a set of our output 8 1705 -3205 6347 62259  -131800  -1.3326
data as linear/angular velocities, i)y, Xaz, eay, and verti- 9 1364 -3523 5105  497.81  -1409.20  -1.0719
10 3.295 -3.523 -6.687 1255.41 -1409.20 -1.4039

cal/tangential impulses after collision, i.@x, pz and pgy.

— accelerometer
high speed camera

Table 2: Real collision between puck and wall: linear and angu-
lar velocities &a and Oa) after collision, and linear and angular
momentum variations (fx and 2\6) calibrated by the linear and
angular velocities, respectively

— accelerometer
~~ high speed camer

velocity [m/s]
)
<)
a

approximated line AN
(high speed camera)

0.03 0.06 0.09 76:
el ® 0 time [s] Xax Xaz Oay mAXy mAX, I,

0 0-01(a())-02 0.03 ®) trial m/s m/s rad/s kgm/s kgm/s  kgnf/s

Figure 11: (a) Linear velocities measured by the acceleration

angular velocity Reg/s]
. [
o
S

. . 1 0.682 0.455 8.236 -0.0018 0.0091 0.00004
scales and the high speed camera. (b) Angular velocities measured 2 1136 0682 36138 00000 0.0145  -0.00001
by the acceleration scales and the high speed camera. 3 1136 1.250 43485  -0.0018  0.0236  0.00005

H : H : : 4 1.364 1.250 11.186 -0.0018 0.0245 0.00005

As shown in thgse results,_ vertlcgl linear velocity and im- s 1705 1136 10772 00027 00255 000008
pulse, tangential linear velocity and impulse, and angular ve- 6 1023 1250 7121  -0.0018 0.0282  0.00005
locity and impulse after collision in our approach are closer 7 1705 1477 7111 -0.0018  0.0327  0.00006
to experimental ones than those in Mirtich’s approach. As a 5o L3%a 188 1988 000 00e9 0001
p : : pp 1./ 9 0909 1932 15346 -0.0036 00436  0.00009
result, our impulse-based approach is better than Mirtich’s 10 2841 1932 16039 -0.0036 00436  0.00010

one. Therefore, we ascertain the superiority of our approach
considering balances between external/internal forces and Table 3: Artificial collision between puck and wall: A set of linear

moments under static/dynamic frictions during collision. and angular velocitiesx; 6) and impulse during collision, which is
calculated in the Mirtich’s approach.

6. Conclusionsand Future Works

Xax Xaz éay Px Pz Po:

In order to overcome drawbacks of Baraff’'s and Mirtich’s tial —mis mis radis  kgmis  kgmis kgnt/s
force/impulsive force approaches, we propose a new precise 1 0729 0355 11130 -00014 00083  0.00005
approach to make linear and angular impulses exactly and 2 0835 0591 58827 -0.0024 00138  0.00008
e H e 3 0.913 0.887 58.847 -0.0036 0.0207 0.00012
grtlf|C|aIIy. In_thls appr_oa_ch, we can g_enerate an artificial 4 1117 0947 29245 00038 00221 000012
impulse that is really similar to its real impulse. Therefore, 5 1507 1062 33218 -0.0043 00249  0.00014
under our approach, a human can feel a real impulse (force 6 1157 1104 17850  -0.0007  0.0277  0.00002
P . . - . 7 1.577 1.366 14.798 -0.0028 0.0318 0.00009
distribution) d_urlng_ col[|5|o_r1 by spme_haphc and also can 8 1650 1732 2935  -00004 00402 000001
watch dynamic animation including simultaneous multiple 9 1561 1867 -17.282  0.0016 0.0431  -0.00005
10 2.380 1.832 49.786 -0.0073 0.0428 0.00024

contacts in a personal computer with a graphics accelerator.
These applications should be realized in a near future.

Table 4: Artificial collision between puck and wall: A set of linear
References and angular velocitiesx, 8) and impulse during collision, which is
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