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             Abstract 
The synthesis of computer models from real objects is a usual procedure in medical image processing and 
reverse engineering. In both cases, the main issues are to reach a topologically consistent and geometri-
cally precise object reconstruction. Implicit surfaces provide a solution to this problem. They define a 
smooth surface surrounding objects which must be polygonized for an efficient visualization. Due to the 
increasing size of the application generated data, it becomes necessary to use precise and efficient meth-
ods. This work presents a modified method of implicit surface polygonization based on “Marching Trian-
gles”. This modification assures the topological consistency with the initial dataset during the progres-
sive reconstruction of the surface, avoiding overlapping triangles. In addition, a comparison of our 
method with the marching cubes and the adaptive skeleton climbing algorithms is provided. 
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1. Introduction 

Poligonization based on triangles is a common visu-
alization method for implicit models, such as those gen-
erated from bones images in computed tomography. 
Parametric surfaces are assumed as the main tool for the 
generation of smooth surfaces in most of the interactive 
modelling environments. Nevertheless, implicit surfaces 
have got several advantages over parametric ones like 
the possibility of being combined and deformed 19. They 
make easier the smooth surface construction with any 
topology and geometry. 

Implicit surfaces can be obtained from discrete or 
continuous datasets. For example, 3D medical image lies 
in the discrete case, whereas the algebraic surfaces, ob-
tained by combination of implicit algebraic equations, 
fall into the continuous case. Implicit surfaces are typi-
cally defined by starting with simple building block 
functions and by creating new functions using operators 
like sum, min or max. If the building blocks are spheri-
cal Gaussian functions the surfaces are called blobbies, 
soft objects or metaballs 22. 

An implicit surface is defined as the set of points P 
satisfying the implicit equation f(P) = c for some func-
tion f 5,17.  Methods that construct the approximation to 
this surface are known as implicit surface tilers or iso-
surface generation algorithms when applied to varying 

values of the value c. Mainly there are two kinds of til-
ing methods, volume based and surface based methods. 

Volume based methods partition the space in non-
overlapping polyhedral cells. They use a volumetric 
decomposition of the space to polygonize the implicit 
surface. The goal of the tiler is to locate intersections of 
the cell edges with the implicit surface to obtain an ap-
proximation of the surface inside the unit cell. The result 
will be represented by one or more polygons 17. 

As the function evaluation for every point is a high 
time-consuming task, a valuable alternative approach 
consists of starting with an initial number of cells on the 
surface and propagating them in a selective way. This 
method is known as numerical continuation 2 and greatly 
decreases the number of evaluated cells. 

An alternative to the volume based implicit surface 
tiling approach are the surface based methods. Marching 
triangles is a surface based method which tiles the sur-
face according to local geometry and topology 6.  The 
topology of an implicit surface refers to the number of 
disjoint components together with the genus of each 
component. A topologically correct polygonization must 
share the same number of disjoint components, each 
component having the same genus as its corresponding 
component on the implicit surface 20. 

http://www.eg.org
http://diglib.eg.org
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There are also other kinds of methods for visualizing 
and controlling an implicit surface, some of them are 
related to the surface sampling. These techniques allow 
direct manipulation of the implicit volume and offer a 
preview of the final shape of the modified object. An 
example of this kind of methods can be found in the 
work of Witkin and Heckbert 22. An iterative fissioning 
approach is combined with local repulsion forces to 
reach a surface with the desired sampling density. 

2. Applications  and related work  

The implicit surface formulation defines a smooth 
surface around the object. Among other uses, this 
method can be employed in: efficient collision detection, 
exact contact modelling, volume preservation 3, model-
ling of soft substances that can be separated or melted, 
animation of elastic bodies or simple characters made of 
articulated skeletons coated with an implicit specified 
volume 12. Recent applications of implicit surfaces can 
be found in cloth simulation within the scope of the 
fashion 4 and in the interactive animation of deformable 
tissues for surgery training 11.  

The major drawbacks of the implicit surfaces com-
pared to the parametric ones are the difficulty in achiev-
ing interactive visualizations, and the complexity of 
mapping 2D textures on these surfaces 10,21,23. 

Representations based on particle systems have been 
proposed to tackle real time modelling. One of their 
shortcomings is that the observer must infer the shape of 
the surface from the particles positions and orientations. 
Particles polygonization offers an improved visual as-
pect at the expense of real time 22.  

To deal with real time problem in the scope of im-
plicit surfaces many solutions have been proposed, for 
instance the use of critical points. In these points the 
changes of the isosurface generation functions will pro-
duce topological changes on the surface 19, 20. The algo-
rithm only has to track those points to detect the changes 
in topology. This idea has been implemented in the ex-
tension of the shrinkwrap algorithm for isosurfaces with 
arbitrary topology introduced by Bottino et al.  7. 

Marching triangles is a surface based method that 
offers an accurate and efficient representation of the 
implicit surface14. The adaptive modification proposed 
by Akkouche and Galin 1 solves the overlapping trian-
gles problem and improves the original method allowing 
a different size of the triangles depending on the surface 
curvature. 

Our proposal yields another surface based solution 
to the tiling procedure that also solves the aforemen-
tioned problem. It acts in two stages. At the end of the 
fist one we obtain a mesh of points that is a good uni-

form sampling of the final surface and an incomplete 
triangulation of the surface, being a partial view of the 
final shape. During the second stage, the surface of the 
entire object is reconstructed by filling the cracks gener-
ated from the first stage. 

The remainder of this paper is organised as follows. 
We begin in Section 3 with a mathematical background 
as well as a brief description of the marching triangles 
algorithm 13,14. Section 4 explains our proposal in detail. 
After describing the results and the limitations in Section 
5 we conclude with a discussion of future work in sec-
tion 6. 

3. Theoretical basis 

We propose an algorithm based on the 3D Delaunay 
triangulation constraint (see section 3.1 ), as well as on 
marching triangles algorithm (see section 3.3), proposed 
by Hilton and Illingworth 14. 

Our algorithm was implemented with CGAL 
libraries that use local Euler operators for surface 
reconstruction (see section 3.2). As a result we obtain a 
polyhedron like the one defined by CGAL libraries 9. 
The underlying data structure is based on the halfedge 
data structure. This construction makes easier the 
triangles subdivision of the final result of our algorithm 
to reach a smooth and accurate surface. 

In the next sections we will use the following nota-
tion introduced by Akkouche and Galin 1. A triangle 
T(xi,xj,xk) refers to a triangle with vertices xi, xj and xk. 
The orientation of a triangle T(xi,xj,xk) is defined by its 
normal nt. With ct we refer to the circumcenter of the 
triangle T in the plane of the triangle. And xi,xj,xk are 
vectors that represent the displacement from the origin. 

3.1. Delaunay constraint 

The Delaunay constraint provides the mathematical 
basis of the implemented method. Boissonnat has dem-
onstrated the following property 6: 

Given a set of points X={x0,...,xn} in R3. 
Whenever the set of points X lie on a manifold 
surface, the Delaunay triangulation is 
characterized by the condition that it is 
composed of triangles T(xi,xj,xk) such that there 
exists a sphere passing through the vertices of 
T(xi,xj,xk) that does not contain any other point of 
the set X. 

The above property can be used as the basis for de-
riving a local constraint of the triangulation 13, 14.  

3D Delaunay Surface Constraint: A triangle 
T(xi,xj,xk), may only be added to the mesh boundary at 
edge e(xi,xj) if no part of the existing model M’ with the 
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same surface orientation is inside the sphere passing 
through the triangle vertex x about the centre, ct. Surface 
points of the same orientation are defined by a positive 
normal product 13,14. 

The orientation criterion allows the polygonization 
of implicit surfaces with thin folding sections. This sur-
face constraint is a somewhat relaxed Delaunay con-
straint, as stated in the work of Akkouche and Galin1. 

3.2. Euler operators and polyhedral surfaces. 

This section reviews the basic theory of Euler 
operators (see 8 for further details). These operators and 
the concept of polyhedral surface are used in the CGAL 
libraries. Our implementation of the modified algorithm 
calls many functions of these libraries. Let us start with 
some definitions: 

Definition 1. If we consider a modeling space based 
on properties of the boundary and not on the volume of 
solid objects, the boundary of a solid consists of a 
collection of faces that form a closed surface.  

Definition 2. A topological transformation is 
defined as a continuous transformation that has a 
continuous inverse transformation. Two sets are 
topologically equivalent if there is a topological 
transformation between them. 

Definition 3. A cell is any figure topologically 
equivalent to a closed disk. 

Definition 4.. A polygon is a cell with a finite 
number of points on the boundary chosen as vertices. 
Sections of boundary between vertices are called edges. 

Definition 5. A polyhedron is a complex that is 
topologically equivalent to a sphere and the constituting 
cells are called faces. 

We can consider a special topology on plane figures 
where a point p on a labelled edge α has a neighbour-
hood consisting of the union of two half-disks around 
symmetrical points on identical labelled edges. This 
construction introduces the concept of plane models 
(PM) and allows the study of their topological proper-
ties. Figure 1 shows an example of a cylinder and a 
sphere and their PM. 

Natural operations in contour representations come 
from considering well-formed PM and their properties. 
It becomes necessary to find a small set of correct PM 
operations that are enough to describe all PM of physical 
importance 8,16. 

Topological properties do not depend on how the 
surface is divided to form a plane model. We consider 

PM with the same topological properties to represent the 
same surface (in a topological sense). Operations that 
move one surface from one subdivision to another do 
not change topological properties. Two such operations 
are polygon cutting and pasting and another two can be 
derived by considering the dual of a PM. These opera-
tions are vertex splitting and joining. 

 

Figure 1. Example of a plane model, a cylinder (left)  
obtained by gluing together a pair of opposite edges, 
and a sphere (right).  

Let us consider a PM of genus 0 (i.e. a plane model 
topologically equivalent to a sphere). Polygon pasting 
and vertex joining are able to reduce PM to a primitive 
PM that has just one vertex and one polygon, but no 
edges. On the contrary, since polygon cutting is the in-
verse of polygon pasting and vertex splitting is the in-
verse of vertex joining, polygon cutting and vertex split-
ting can be used to build all genus = 0 plane models 
from a primitive PM, known as skeletal PM which con-
sists of a single vertex and a single face.  

We need an operation to create the primitive skeletal 
PM from nothing. With three operations, skeletal PM 
creation, polygon cutting, and vertex splitting we can 
create all genus = 0 models. There is only a single se-
quence of topologically distinct surface types. Within 
each surface type, it is possible to use polygon pasting 
and vertex joining to reduce a PM of a surface to a 
primitive PM representing that surface. 

We use the property that every orientable 2-manifold 
is topologically equivalent either to the sphere, or to the 
connected sum of n tori, n>0. 

To create surfaces other than that equivalent to a 
sphere we need other operations. These are the so-called 
global topological operations because they modify more 
than the local conditions, they modify the topological 
properties of the surface. In doing so we employ the 
connected sum and connected minus. 

The six abstract operators: polygon cutting, polygon 
pasting, vertex splitting, vertex joining, connected sum, 
connected minus form the basis  of the so called Euler 
operators. 

The Euler operators act on the data structures repre-
senting PM. The six local topological operations, vertex 
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joining and splitting (kev and mev), polygon cutting and 
pasting (mef and kef) and loop expanding and collapsing 
(kemr and mekr) can be described by the set of operators 
and elements listed in Table 1. 

Elements s–solid s–shell f–face r–ring   
h–hole      e–edge     v–vertex 

Operators m–make  k–kill  s–split  j - join 

Table 1. Basic elements and operators for the repre-
sentation of all topologically local and global opera-
tions. 

 
The global operations that modify the model topol-

ogy could be described according to those operators, the 
connected  sum (kfmrh) and the connected difference 
(mfkrh). 

3.3. Previous work 

We can find an in-depth description of the algorithm 
of marching triangles in recent publications 1,13,14. These 
works employ the properties of 3D Delaunay triangula-
tions as well as the 3D Delaunay constraint to get a 
globally Delaunay triangulation with uniform triangle 
shape. 

We will give a brief description of the original 
marching triangles method 13. The algorithm starts with 
a seed model M=M0 that can be a single triangle. The 
model M is represented as a list of edges and vertices. 
The algorithm is implemented as a single pass through 
the edge list. It does not terminate until all edges have 
been tested once.  

The creation of a new surface vertex xproj to con-
struct a new triangle is performed projecting a constant 
distance lproj from the selected edge. The projection is 
perpendicular to the mid-point of the selected edge in 
the plane of the model boundary element Tb(xi, xk, xk+1). 
Next it evaluates xnew as the nearest point to xproj on the 
implicit surface, and applies the Delaunay surface con-
straint to Tnew(xk+1, xk, xnew). If Tnew passes the constraint 
then it is added to the list, otherwise the algorithm tries 
with adjacent vertices. The Delaunay sphere for the new 
added triangle is shown in Figure 2. 

The algorithm proposed by Hilton and Illingworth  
fails when the mesh growing starts folding as stated in 
the work of Akkouche and Galin1. The problem is that 
new created triangles pass the Delaunay test, but some 
existent triangles can fail this test with this added new 
point and the added new triangle. 

 

Figure 2. New triangle creation step. 

Akkouche and Galin have presented an alternative 
implementation of marching triangles that introduces an  
adaptive length of the projected distance. Their proposal 
generalizes the algorithm by adapting the step length to 
the local curvature of the surface. 

4. Our implementation 

An implicit surface is represented as the zero-set of 
points in space that satisfy the equation  f(x) = 0. The 
signed distance to the surface is defined by the field 
function f(x).  

We present a tiling method that operates in two 
stages. The goal of the first one is to obtain a mesh of 
points that are a good sampling of the final surface. The 
second stage recover all the surface of the object. The 
proposed algorithm acts as follows: 

1. Surface sampling. Starting with the seed triangle 
it locates more triangles on the surface, forming a bent 
surface. This surface is made of  glued triangles forming 
a strip. That is the reason behing the name of the 
algorithm. 

2. Surface filling. It closes the intentionally 
generated gaps between the strips of triangles.  

The algorithm includes two additional stages. One 
previous stage locates a seed triangle on the implicit 
surface. In this previous stage we can use an initial 
model instead of a seed triangle. It could also exist 
another final stage that subdivides the triangulation 
using the information of the implicit. The result is a 
polyhedral surface that approximates the final shape of 
the object. 

4.1. Locating a seed triangle 

First of all, an initial seed model is defined, M = M0. 
This seed model can be a previous model or a single 
triangle located on the implicit surface. This stage is 
performed by shifting a triangle through the entire 
volume. We need one seed triangle for every object in 
the volume. 
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4.2. Surface sampling 

In this stage new triangles are added to the initial 
polyhedral structure constructed with the seed model. 
This stage was implemented with the 3D polyhedral 
surface.  

Figure 3.a shows the problem of overlapping 
triangles (see Section 3.3), in this case exists an overlap 
of the Delaunay spheres. Nevertheless Figure 3.b illus-
trates a worst situation that implies an overlapping in the 
triangles which also meet the condition proposed in the 
initial algorithm of Hilton and Illingworth. 

Instead of testing every time all the spheres of the 
previous triangulated points we propose a new modified 
criterion that construct the surface by making strips of 
triangles. The modified criterion includes the Delaunay  
in-sphere test of the new triangle Tnew(xk+1, xk, xnew) for 
the region out of the surface.  

After projecting a distance lp in the normal direction 
to the edge e(xk+1, xk) in the plane of the triangle Tb(xi, 
xk, xk+1) the algorithm leads to a point xproj . Then 
starting from that point we locate another point on the 
implicit surface in the normal direction to the triangle 
Tproj(xi, xk, xproj). The result is a new point xnew  located 
on the implicit surface. 

(a)  (b) 

Figure 3. Problems detected in the MT algorithm. a) 
the overlap of the two Delaunay spheres b) overlap of 
the spheres and the triangles. 

In Figure 4.a we can see the position of the new 
sphere. We select the point xnew as the centre of the 
sphere. In  Figure 4.b we see the case of a near point that 
meet the Delaunay criterion for all the present triangles. 
We also exclude this case because it would generate two 
points very close to each other, and it is not desirable for 
a good sampling criterion. 

The key step of this algorithm is the creation of the 
new triangle. The solution depends on the marching 
direction. In Figure 5 we can see the two kinds of striped 
growth. The fist one that we call spiral growth is shown 
in Figure 5.a and the second that we call sawline growth 
is displayed in Figure 5.b.  

(a) (b) 

Figure 4. The new modified criterion that overcomes 
the problem stated by Akkouche and Galin a)test ok, 
b)test fail. 

This stage have been tested with objects of different 
topologies. All the objects, the sphere, the pill and the 
knot have been obtained from a 300x300x300 data size 
with a  projected length of 5 units (lp=5). 

(a) (b) 

 (a) 
 (b) 

 (a) (b) 

Figure 5. Two kinds of growth for obtaining a uni-
form point mesh, it gives a previous approach to the 
final aspect of the object .a) spiral growth and b) saw 
line growth. For a sphere (top), pill (centre) and knot 
surface (bottom). 
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In our case the implementation of the spiral growth 
results in a faster solution due to the number of attempts 
when a new triangle is created. The results in this case 
for the sampling are the ones of Table 2. The first row is 
the size of the implicit data volume used to generate the 
surface, the second one is the number of points gener-
ated by the algorithm, the third row is the number of 
generated triangles, and the fourth row is the mean dis-
tance to the first neighbour obtained by the 3D Delaunay 
triangulation of the generated points. The last row is the 
projected distance used to march. 

 

 Sphere Pill Knot 

V. Size 300 ^ 3 300 ^ 3 300 ^ 3 

Points 5698 1985 5108 

Triangles 5696 1983 5106 

Mean d. 5.43 6.49 5.46 

lp 5 6 5 

Table 2. Results of the sampling with the test objects. 

These results agree with the visual homogeneity of 
the triangles aspect.. The mean distance is greater than 
the projected distance due to the algorithm construction 
of the triangle Tnew(xk+1, xk, xnew) as it could be expected. 
4.3. Surface filling 

In this stage we fill the gaps between the strips by 
testing the consecutive border edges of the polyhedral 
surface of the previous stage. We only create the trian-
gles that succeed the Delaunay in-sphere test. In this 
stage the algorithm also advances in strips but only be-
tween the existent ones. 

The result is shown in Figure 6. The resulting 
polyhedral surface have two or three border edges that 
must be closed. In the case of the sphere there are two 
border edges, and so that we do not see any hole. For the 
pill there exist three border edges at the end, and that is 
the reason why we only see one triangular hole in the 
right hand side of the Figure 6.b. In both cases the result 
is a correct polyhedral surface. 

4.4. Subdivision 

We propose a final stage of subdivision to improve 
the geometry of the final shape. It could be done by 
using the centre of the triangles to divide the existent 
ones, locating the new vertex on the position of the iso-
surface taking into account the normal triangle direction. 

(a) (b) 

Figure 6. The result surface after the surface filling 
stage. a) with the sphere b)with a pill included in a 
300x300x300 volume data, with radius 80, and lp=5. 

5. Results 

Visual quality of surfaces is difficult to define and 
measure because many independent factors such as 
camera position or shading model can affect the final 
visualization 17. In our case we try to develop a fast algo-
rithm with few output triangles. For visualizing the re-
sults we have used a software developed in our research 
group based on the OpenGL libraries. This software 
provides a smooth surface using the triangle normals, 
although we have not employed this option to see in 
detail the constituent triangles of the results. 

The marching triangles algorithm reconstructs the 
correct topology of implicit surfaces features greater 
than the constant projection distance lp. Nevertheless the 
resulting triangulation can be improved with the surface 
subdivision post-step. We have tested the algorithm and 
it works properly with data sets of 1 Gigaboxel, being 
the main problem the volume construction. 

5.1. Comparison 

The complexity of the implicit surface reconstruc-
tion methods can be described as a function of the num-
ber of evaluations of the implicit function 10. The com-
plexity study is similar to the original algorithm 14. It 
depends on the size and shape of the object in the data 
volume. So it also depends on the number of final edges 
in the polyhedral model O(NE). 

In the first stage, two implicit surface evaluations are 
needed to find the nearest point located on the implicit 
surface. In this process we check all the border edges to 
avoid overlaps at every new triangle creation step.  

In the second stage we review all the adjacent border 
edges to fill the holes between them. The growth is in 
strips with a hole strip of the same width, the area of the 
hole is approximately the same as that of the surface 
tiled, and the evaluations for this stage are O(NE) as 
well. 
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 We use a constant projection distance lp, and hence 
the element edge and element area are approximately 
constant. As a result the computational complexity is 
proportional to the area of the manifold surface recon-
structed. 

We have selected two algorithms for the comparison 
with our algorithm. The first one is the adaptive skeleton 
climbing (ASC) 18, which belongs to the volume based 
approach. The second one is the marching cubes (MC) 
15, which is a usual reference test algorithm.  

The results of the reconstruction of the same object 
with these three algorithms are shown in Figure 7. The 
size of this data volume is 200x200x200 and all the val-
ues are integers. In the case of the striped marching tri-
angles (SMT) we can see the effect of discrete values, is 
improved when the data size is big compared with the 
projected distance lp, in this case lp=4. The results on 
Table 3 have been obtained using an equivalent size for 
the three algorithms. In the case of MC we have resam-
pled the data volume to a 50x50x50 volume, so the cube 
cell size is equal to 4. 

  

  

  

Figure 7. Comparison of the results according to the 
aspect to the  final triangles. radius 20 (left), and radius 
50 (right), in a 200x200x200  volume of integer values. 
With the algorithms ASC (up), MC(centre), Striped MT 
(down). 

The used version of ASC has block size N=4. For a 
more detailed comparison between the different ASC 
block sizes and MC, see the work of Poston et al. 18. For 
a more detailed comparison between MC and the origi-
nal MT algorithm see 13 , 14.  

As we can observe in Table 3 the number of generated 
triangles is less in the case of striped marching triangles, 
but as can be seen in Figure 7, the main problem that 
shows this algorithm is the low definition in curved 
areas due to the difficulty of the method with features 
smaller than the projected distance. 

SMT ASC MC
r = 20 1043 1584 1793
r = 30 2025 2984 3417
r = 40 3059 4900 5509
r = 50 4453 7624 8093

Table 3. Comparisons of the number of triangles de-
pending on the object size, the selected object to this test 
is the pill with radius r. 

6. Conclusions and future work 

Surface reconstruction using Marching Triangles of-
fers a possible solution to the interactive modelling. In 
this and other scopes the speed of the algorithm is very 
important. 

In this work we have proposed a modification of the 
marching triangles algorithm of  Hilton and Illingworth 
witch overcomes the existent problem of the overlapping 
triangles. 

There has been reached a good sampling of the sur-
face in a first stage of our algorithm. In this first stage 
we have also obtained the triangulation of the half sur-
face. Leaving the other half surface for the second stage. 
This triangles can be used as a preview of the final shape 
of the object.  

A new modified criterion for the triangle creation 
has been proposed that leads to a valid surface sampling 
for any object topology. 

The Euler operators have been used to extend the 
surface, so the constructed surface is a correct polyhe-
dral surface. 

Our current research is oriented to finding the corre-
spondence between the plane models and the recon-
structed surfaces in order to know when it will be 
needed a new stage of crack closing. It would be also 
very interesting to study the possibility of using the cor-
respondence information for texture mapping. We are 
also working in an adaptive version using a curvature 
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dependent process of subdivision which solves the prob-
lem illustrated in Figure 7. 
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