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Motion Planning and Visibility Problems using the Polar
Diagram

C.I. Grima and A. Márquez† L. Ortega‡

Abstract
Motion planning and visibility problems are some of the most important topics studied in Computer Graphics,
Computational Geometry and Robotics. There exits several and important results to these problems. We propose
a new approach in this paper using a preprocessing in the plane, the polar diagram. The polar diagram can be
considered as a plane tessellation with similar characteristics to the Voronoi Diagram. The Euclidean distance
criterion is changed by the minimal angle criterion in this new approach. The advantage of using polar diagrams
is an optimal computing preprocessing time and their immediate applications to angle problems as visibility or
motion planning problems.

1. Introduction

The solution to many important problems in Computer
Graphics requires angles processing of the data input. In Fig-
ure 1 a simple visibility problem is presented. The maximum
visibility angle from any point x, can be easily found by the
computation of angular scanning towards the objects A and
B.

Nevertheless, the angular scanning performed in this ex-
ample is not a practical method when the calculation is repet-
itive. Every angular sweep needs a linear processing time.
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Figure 1: Vision angle from the pointx.

The locus approach we propose, the polar diagram, con-
structs a tessellation in the plane that used as preprocessing,
avoid making exhaustive searches to find sites with mini-
mum angle characteristics. The information the polar dia-
gram maintain is intrinsic to its data structure in a similar
way to the proximity problem resolution using the Voronoi
diagram 16.

But the aim of this paper is not only the polar diagram def-
inition or the study of optimal algorithms construction. This
tessellation have important and interesting angle properties.
Every polar region is the locus of the points with similar
visibility angle with respect to any other site. The problem
presented above can be solved efficiently, not only for a de-
termined point x but for any point in the plane.

This characteristic allows us to face up to the path plan-
ning problem as well. A possible path free of obstacles can
be found solving local visibility problems and joining the
results.

This paper present the polar diagram of a set of points in
the plane in Section 2. Its extension to any other geometric
object is studied in Section 3. In Section 4 we study visibility
problems and a new method for the path planning computa-
tion.

2. Polar diagram Definition

In this section we define the polar diagram of a set of points
in the plane assuming that this definition can be generalized
to any other geometric object.
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Figure 2: Polar angle.
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Figure 3: Polar diagram of S.

We introduce the polar diagram as a plane partition with
similar features to the Voronoi diagram. Let us define all po-
lar diagram elements.

The polar angle of the point p with respect to si, denoted
as angsi(p), is the angle formed by the positive horizontal
line of p and the straight line joining p and si, as it is shown
in Figure 2. As the polar angle must be lower than π, p has
less y-coordinate than si.

Given a set S of n points in the plane, the loci of points
with least positive polar angle with respect to si ∈ S is
called polar region of si, denoted as PS(si). Thus, PS(si) =
{

(x,y) ∈ E2 | angsi(x,y) < angs j (x,y),∀ j 6= i
}

. The plane

is divided in different regions in such a way that if the point
(x,y) ∈ E2 lies in PS(si), it is known that si is the first site
found performing an angular scanning starting from (x,y).
We can draw an analogy between this angular sweep and the
behavior of a radar 9, 5.

All si ∈ S constructs a polar region and these n regions
divide the plane defining a tessellation we have named polar
diagram of S, denoted as P(S). Lines and half-lines con-
structing these polar regions are called polar edges.

To summarize, we construct a plane tessellation with the
polar angle criterion. Actually, the polar diagram constructs
a partition of the lowest semi-plane. The boundary is the
straight horizontal line crossing the highest site of S. In Fig-
ure 3 is depicted the polar diagram of a set of points in the
plane and the final division constructed using the least polar
angle criterion.
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Figure 4: Example of polygons polar diagram.

3. Polar diagram of geometric objects

In 5, 9 we give optimal algorithms for the polar diagram con-
struction using the sweep line and the divide and conquer
methods. Otherwise, there is no justification for a plane pre-
processing. The fastest method, the plane sweep, constructs
the polar region of si, ones the i− 1 points with greater y-
coordinate have been processed.

As it has been mentioned before, plane partitions have
found lots of applications fields. However in many real prob-
lems, tessellation generators can not be considered elemen-
tary points. Thus, reality is represented using geometric ob-
jects as segments, polygons and circles. Some of these prob-
lems are proximity problems, path planning and visibility or
illumination problems. Classical examples of tessellation in
the plane are the Voronoi diagram or the trapezoidal maps.
Polar diagram of geometric objects is in fact, a new partition
of the plane with similar characteristics to the polar diagram
of a set of points 7, 8, and its definition is really similar to the
given for points in the plane. Let O be a set of geometric ob-
jects in the plane, the polar region associated to oi, PO(oi)
is the locus of points with least polar angle with respect to
oi than with respect to any other object of O, in a positive
angular scanning starting from the zero angle.

There is an important property associated to the polar dia-
gram of polygons and segments: it is contained into the polar
diagram of the set of points made up of their vertices or end-
points.

An optimal method for the polar diagram construction of
a set of geometric objects can follow a sweep incremental
algorithm for a set of points, but adding restrictions in order
to discard some polar edges or portions of them. Following
the following rules allows us to eliminate certain edges: (1) if
there is any obstacle to the right of an endpoint, (2) if it splits
two sectors of the same polar region, (3) if an edge portion
lies inside another polar region and (4) if a polar edge lies
inside the object it belongs. We show an example of poly-
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Figure 5: Processed vertices.

gons polar diagram in Figure 4 drawing the discarded edges
with striped lines, the rest of edges remain.

Algorithm 1 describes the technique for polar diagram
construction of a set of polygons in the plane. The algorithm
extension for line segments is obvious, however the polar
diagram for a set of circles needs some other comments to
reach to similar conclusions as we see in 14.

Nevertheless, the polar diagram computation of polygons
can be improved again because not all vertices belong to a
polar edge. There are not edges associated to reflex vertices
and neither to those in the left side of a polygon. Only the
following vertices, illustrated in Figure 5, are taken into ac-
count:

Start: Vertex vi is a Start vertex if vi−1 and vi+1 have less
y-coordinate.

End: Vertex vi is an End vertex if vi−1 and vi+1 have greater
y-coordinate.

Right: Vertex vi is a Right vertex if vi−1 has less y-
coordinate and vi+1 has greater y-coordinate than vi.

Algorithm 1 needs an O(n logn) time to sort all vertices.
The incremental approach always work in a similar way: ev-
ery vertex point is reached from top to bottom and processed
according to some conditions. There are n vertices to pro-
cess, and those preliminary polar regions can be constructed
in linear time. For every vertex vi it is necessary an additional
O(logn) time to find neighbors to left and right in order to
discard those edges mentioned before, however the optimal
O(n logn) time is not modified.

To sum up, the polar diagram of polygons can be com-
puted in a Θ(n logn) time, being an optimal preprocessing
in the plane for visibility and motion planning problems.

4. Visibility problems and Motion Planning

The polar diagram can be considered a new geometric ap-
proach to solve angle problems. This new tessellation ap-
plications are the convex hull of a set of points and objects
in the plane 5, visibility problems and its generalization to
the path planning problem. The polar diagram advantages
are their robust construction methods in optimal computa-
tion time.

Algorithm 1: Incremental

Input: A set P of N polygons in E2

Output: P(S)
BEGIN

1. Sort vertices of P by decreasing
order, obtaining V = {v0,v1,...vn−1}

2. Push(stack, 0)
3. Compute v0 polar edges
4. FOR i = 1 to n−1 DO

a. Be such p that vi ∈ p
b. WHILE vtop(stack) oblique edge

intersects with the horizontal
of vi

i. Pop(stack)

c. Let pR and pL be the nearest
polygons to right and left of
vi

d. IF vi is a convex and begin
vertex THEN

i. IF @ another begin vertex
v j ∈ p to the right of vi

ii. THEN compute an horizontal
edge from vi reaching to pL
if it exists or to infinite
otherwise

iii. IF @ pR
iv. THEN compute an oblique edge

from vi with gradient
vtop(stack)vi if does not cross p

e. IF vi is a convex and right
vertex THEN

i. IF @pR and vtop(stack) /∈ p
ii. THEN compute an oblique edge

from vi with gradient
vtop(stack)vi if does not cross p

f. IF vi is convex and end vertex
THEN

i. IF vtop(stack) /∈ p THEN

A. IF ∃pR
B. THEN compute an

horizontal edge from vi
reaching pL if it exists
or to infinite otherwise

C. ELSE compute an oblique
edge from vi with
gradient vtop(stack)vi

5. END_FOR
6. Push(stack,i)

END
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Figure 6: Point x lies into the polar regions of A and B.

4.1. Visibility problems

Visibility problems are one of the most important topics in
Computational Geometry with important repercussions in
Computer Graphics. Some of these classical problems are
the Art Gallery 1, Illumination 12 and even the Path Planning
problem 13.

We define the problem shown in Figure 1 as the maximum
visibility angle problem in an orthogonal direction. It can be
considered one of the simplest visibility problems, the max-
imum visibility angle from a point x towards any orthogonal
direction, East, North, West or South. This problem can be
easily solved in linear time computing an angular scanning
with positive and negative criteria. But again, this exhaustive
search can be avoided using polar diagrams.

After the polar diagram definition, it is straightforward to
understand that this visibility technique can be improved us-
ing this tessellation as preprocessing. Object A is known to
be the first obstacle found in a positive angular sweep start-
ing from point x. This information is given by the polar di-
agram in a logarithmic time, the time we need to locate this
point into a polar region.

However, the least positive polar angle criterion is not
suitable to find object B. In fact, it is necessary a negative
angular scanning instead of a positive one. But again, po-
lar diagrams can be useful in this search, we only need to
change the polar diagram criterion of construction to find a
different tessellation with similar characteristics. In Figure
6 it has been superimposed these two East polar diagrams.
Point x belongs to different polar regions depending on the
used criterion. When this circumstance happens, as we ob-
serve in Figure 7 with the point x, it always means that the
visibility angle is null. Point p is in both cases in B polar re-
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Figure 7: Polar diagrams in the zero angle.

gions, so we know this object hinders in a trajectory towards
the East direction, in fact, this is the only object we should
avoid in a East trajectory.

Theorem 1
Given a set of n geometric objects in the plane, the polar
diagram can be used as preprocessing to find the maximum
orthogonal visibility angle problem in O(logn) time.

Proof
It is straightforward to prove this theorem taking into ac-
count that for any orthogonal direction, both polar diagrams
can be computed in O(n logn) time. A point location in a
polar region is known to be found in logarithmic time.

Nevertheless, not only orthogonal visibility problems can
be solved using polar diagrams. The generalization to any
other direction is the key to deal with other geometric angle
problems. If we pretend to provide a robot with automatic
movement, or simulate visits to virtual scenes generated in
a random way, or to find a solution to collision detection
problem, polar diagrams can be used as preprocessing in the
plane to improve computation times. These and other visibil-
ity problems applications can be taken into account to some
interest areas in Computer Graphics. We give in the next sec-
tion an introduction to the path planning problem.

4.2. Path planning

The motion planning purpose is to provide a mobile ob-
ject with the capacity of automatic decision about any kind
of movement among different obstacles. This mobile object
uses to be a robot, thus, any new proposal in the resolution
of this problem can be considered a Computer Graphics and
Computational Geometry contribution to the Robotics.

Several algorithms have been developed for path planning
problems, we find an exhaustive survey in 13. One of the
most important constructs the visibility graph, in which ev-
ery two vertices are connected with edges if one vertex is
visible from the other. The resulting graph is the input to the
Dijkstra algorithm 2.

Using the visibility graph, it is possible to find the mini-
mum path from an origin and a destination. Nevertheless the
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Figure 8: Path planning in a 2D scene.

path planning solution using the visibility graph can not be
considered a fast method. In some situations it is more de-
sirable a quickest technique than the best one. Some other
times, the minimum path does not comply some conditions.

An example of non optimal path planning algorithm is
given by Kedem 11. This proposal performs a trapezoidal
map of the free obstacles space, computing vertical lines
from every vertex while another obstacle is not intersected.
Using this O(n logn) preprocessing of the plane, a set of free
obstacles areas is found, and a path planning algorithm can
be computed.

The polar diagram technique for the path planning resolu-
tion is also based in the identification of a set of free obsta-
cles regions. In the previous section, we have found a new
method based on polar diagrams to solve the maximum vis-
ibility angle problem. A new path planning solution can be
seen as a chain of points in such a way that each of them can
see its successor. All these points are found using the pair
of polar diagrams in a determined direction. The result is a
polygonal line joining all these visible points.

We use the polar diagram for the following motion plan-
ning problem approach. It is considered a system in which
there exists a set of planar objects. We assume that the shape
and location of these objects are known. Given a initial posi-
tion o and a destine point d, the path planning problem aim
is to find a free obstacles trajectory joining o and d. An ex-
ample is shown in Figure 8.

We focus our study in a simplification of the problem in-
troduced above: the movement of a point object in a two-
dimensional environment. Polar diagrams used in visibility
problems are the key to understand how we can move to-
wards a determined direction. For example, whenever point
x lies into the polar region of the same object using the two
East direction polar diagrams, we do know that this object
is the only one obstructing any movement towards this di-
rection. In the opposite case, a East movement is guaranteed
and there a free obstacles path exists.

However, a valid path between origin and destination is
not always towards an orthogonal direction. Observe Figure

O

D

Figure 9: Path between origin and destination.

Figure 10: Vector decomposition into orthogonal compo-
nents.

9, even though the vector joining point o and d has a clearly
South direction, a West movement is necessary at the end of
the route. In the general case, the vector

−→
od can be decom-

posed in two orthogonal components, an horizontal and a
vertical component. These new horizontal and vertical vec-
tors determine the direction of the pairs of polar diagrams
to use. As it is depicted in Figure 10, vector

−→
od has been

decomposed giving the pairs of 0 and 3π/2 angle polar dia-
grams. If any visibility problem in an orthogonal direction is
solved using only a pair of polar diagrams, any other direc-
tion requires two polar diagrams pairs, the ones given by the
direction vector.

The path planning problem uses the technique described
above. In order to define a valid path between a origin and
destination point, we maintain eight polar diagrams, two in
every orthogonal direction. In every step a horizontal, verti-
cal or oblique movement is decided, depending on the

−→
od de-

composition. A reason to decide one of these types of move-
ments can be the proximity to the destination. Once a valid
movement have been processed the origin point changes, and
a new trajectory vector is obtained. It is obvious that finally
the process finishes when the distance between origin and
destination is zero.

Figures 11 and 12 show two different examples of trajec-
tories. Both cases have a common property, the origin and
destination vector have a South-East direction, being neces-
sary two pairs of polar diagrams for the path planning reso-
lution. This circumstance and the simplicity of the examples
have been chosen for understanding, however the 2D scene
complexity does not modify the mechanism followed. When
a pair of polar diagrams have provided a portion of trajec-
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Figure 11: East direction polar diagrams.

Figure 12: South direction polar diagrams.

tory, a red arrow is drawn, otherwise this arrow appears in
grey color.

Example 1: The first example is depicted in Figures 11
and 12 using a polygonal line with 1 as first sub-index.
The initial vector

−−−→
o11d1 changes every time that its origin

changes. The first movement chosen is horizontal because
it obtains a nearer position to the destination d1. Origin
o11 lies into the both polar regions associated to A in the
East direction. We do know this is the only object that
obstruct a horizontal trajectory. We choose the orthogo-
nal movement because object B could intersects with the
straight line joining o11 and o12. However is it straight-
forward to improve these orthogonal movements because

the polar diagram maintains information about adjacent
regions and consequently about adjacent objects.
Once point o12 is reached, the South pair of polar dia-
grams is chosen because o12 and the destination d1 belong
to the same pair of regions and a free path between then is
guaranteed.

Example 2: In this other example, we firstly choose the
South polar diagrams pair to perform a movement just
towards the frontier of the polar region where o21 lies.
Again, the vertical trajectory is more interesting because
of the final proximity to d2. From point o22, a path free of
obstacles towards o23 is guaranteed because o22 belongs
to different objects polar regions. Finally, any of the pairs
depicted in both figures allows to reach destination d2. In
both cases, polar regions in which points o23 and d2 lies,
are exactly the same ones.

The number of steps to finalize the process is as much the
number of polar regions crossed whose number uses to be
lower than methods like trapezoidal maps. Another issue not
discussed at the moment are the local minimum points. At
every moment a vertical or horizontal path must be decided,
if a local minimum is detected, we always have an alterna-
tive path to continue, adding only an inclusion test to the
algorithm.

Even when this method does not always find an opti-
mal path, some advantages have to be taken into account:
the polar diagram computation is a Φ(n logn) preprocessing
time that can be computed for different geometric objects
and provide a intuitive technique to solve visibility and path
planning problems.
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