
EUROGRAPHICS 2003 / M. Chover, H. Hagen and D. Tost Short Presentations

Efficient Sampling of Textured Scenes in Vertex Tracing

Thomas Ullmann

IC:IDO VR productive, Germany
Thomas.Ullmann@icido.de

Thomas Preidel, Beat Bruderlin

Technical University of Ilmenau, Dept. of Computer Science and Automation
Thomas.Preidel/Beat.Bruederling@prakinf.tu-ilmenau.de

Abstract

We present vertex tracing, an adaptive progressive ray tracing approach for efficient sampling of the radiance
function, based on refinement in object space and subsequent reconstruction, using standard 3D graphics accel-
erator hardware.
The main focus of this paper is the reconstruction of reflected and transmitted texture maps. By taking advantage of
the newest graphics hardware features (such as the pixel shader) even higher levels of recursion can be supported
without explicit sampling of the textures. In addition, the graphics hardware is used for an efficient visibility test,
which leads to a further reduction of ray samples, and for the rendering of diffuse local illumination effects, as well
as for progressive rendering of the global illumination effects, which are superimposed over the hardware-rendered
scene in object space. With this approach, interactive performance for realistically rendered illumination effects
of scenes of average complexity, can be achieved on a standard PC with off-the-shelf 3D graphics accelerators.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Vertex Tracing, Adaptive
Progressive Ray Tracing, Radiance Reconstruction, Texturing

1. Introduction

Most PCs purchased today come with a 3D graphics hard-
ware accelerator as a standard option. Such graphics hard-
ware is based on raster conversion of polygons, supporting
visibility tests, Gouraud shading and texture processing, as
basic functionality. Real-time animation of dynamic scenes
of average complexity (consisting of up to several hundred
thousand to a few million polygons) is achieved. The level
of realism of hardware rendering, however, is limited to sim-
ple local illumination effects. Indirect reflections, refractions
and certain other global illumination phenomena are not di-
rectly supported. Moreover, scenes with increasingly high
numbers of polygons can no longer be visualized in real-
time with hardware-based on raster conversion.

Ray tracing, on the other hand, can achieve much higher
levels of realism. While it is still far from being able to reach

real-time performance levels on a single-processor PC, ray
tracing can be easily parallelized, taking advantage of cache
coherence and thus outperforming raster conversion hard-
ware for highly complex scenes with several million poly-
gons 18� 8. Therefore ray tracing is becoming a viable alter-
native to raster-based graphics hardware for visualization of
large scenes.

Adaptive ray tracing can significantly reduce the number
of samples that need to be calculated, and further improve
performance. One problem with adaptive ray tracing, how-
ever, is the integration of textures. Textures are most often
used to approximate the material properties of surfaces that
result in a high frequency radiance function. However, by re-
ducing the useable image coherence in adaptive sampling of
such functions, the computation cost rises significantly. How
to circumvent the direct sampling of primary and secondary
reflections and refractions is one of the main topics of this

c� The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org

Ullmann, Preidel, Bruderlin / Efficient Sampling of Textured Scenes in Vertex Tracing

paper. Only the exploitation of modern graphics hardware,
in particular the programmable pixel shading functionality,
permits an efficient integration of textures in the vertex trac-
ing approach.

After a short survey of related work on the topic of adap-
tive progressive ray tracing in section 2, section 3 gives
a brief summary of vertex tracing and introduces an effi-
cient visibility test. Section 4 describes the details of the
hardware-supported reconstruction of textured scenes. An
evaluation of the results is given in section 5, and the con-
clusion and suggestions for further research in section 6.

2. Related work

One of the first adaptive progressive ray tracers was pro-
posed by PAINTER and SLOAN9, and provided for handling
the image as a continuous region without pixel borders. The
authors aimed for the reconstruction of a fast low-quality im-
age, as well as a high-quality anti-aliased one through opti-
mal sample distribution in the image space. For this purpose,
they applied sampling, based on refinement of the image
with a two-dimensional BSP tree, which was refined until
the desired level of quality was achieved. The samples gen-
erated were interpolated in the image space withDelaunay
triangulation3; no special handling of textures took place.

In 5, GUO presented a modified method of adaptive pro-
gressive sampling. GUO used "directional coherence maps"
(DCM) for efficient handling of radiance discontinuities.
With DCMs, image discontinuities are refined by the divide
and conquer principle until only simple directional discon-
tinuity edges can be approximately represented and subse-
quently interpolated with oriented finite elements . In 14 the
approach from 5 was extended with respect to more efficient
texture handling. The inclusion of texture values doesn’t oc-
cur until the interpolation phase, after sampling has been
completed. However, the representation of secondary (re-
flected or transmitted) textures is not possible in this ap-
proach.

While the methods in 1� 2� 5� 6� 11� 14� 9 rely on sampling in
the image space, the method of 15 operates in object space.
TELLER et al. use interpolants, which are constructed about
the scene objects and represent their radiance. It is possible
to further refine the interpolants as needed, in order to better
approximate both discontinuities and non-linearities. Typi-
cal for this object space-based method is the possibility of
exploiting both object space coherence and temporal coher-
ence. The disadvantage of the method is that the construction
of interpolants can only be done for convex scene objects.
Furthermore, textures are not specially taken into account,
so that complete sampling of textures occurs.

Vertex tracing, first proposed in 16, likewise belongs to
the group of samplers that pursue object space-based refine-
ment. The data structure of the refinement is directly ori-
ented toward the geometry of arbitrarily tessellated objects.

This fact also has a positive effect on the handling of tex-
tures. Furthermore, in contrast to 14, it can even entirely do
without sampling of secondary textures. Through the use of
graphics hardware in the form of a pixel shader, an efficient
hybrid form of raster graphics and ray tracing results.

3. Vertex Tracing

The fundamental principle of the vertex tracing technique 17

is shown in Fig. 1. Similar to numerous methods for acceler-
ating ray tracing, vertex tracing also exploits coherence char-
acteristics, in this case primarily image coherence. The core

reflection
(discontinuity)

adaptive sampling
through triangulation

no explicit
detection
of object

silhouettes

high light
(non-linearity)

Figure 1: Adaptive progressive refinement in object space -
principle of the vertex tracing

approach.

of the approach is a targeted sampling of the radiance func-
tion in order to achieve a significant reduction in the number
of ray intersection tests necessary for generating the image.
The sampling operates in an adaptive, progressive manner.

principle of Ray Tracing

eye point

transmitted (refracted)
rays

reflected rayslight source

image plane

bilinear
interpolation

principle of Vertex Tracing

primary rays
pixel

VT-Object

primary vertex

Figure 2: Concept of vertex tracing. In contrast to tradi-
tional ray tracing all primary rays are generated directly
from the object vertices (and from the adaptively refined ob-
ject geometry, respectively).

c� The Eurographics Association 2003.

Ullmann, Preidel, Bruderlin / Efficient Sampling of Textured Scenes in Vertex Tracing

This means that nonlinearities or discontinuities contained in
the radiance function are approximated more exactly in each
step. Using the example of the sphere in Fig. 1, an adaptive
sampling of the radiance values can be observed at those po-
sitions where a high variance in the radiance function occurs
(reflection, refraction, shadow edges).

In contrast to 10� 3, the generation of the support geome-
try for the sampling for vertex tracing takes place in object
space, with subsequent projection in the image space. Ad-
ditionally, in contrast to 15, the support geometry is directly
superimposed on the existing geometry of the triangulated
scene objects, which undergo an additional adaptive trian-
gulation. As shown in Fig. 2 (red ray path), the primary rays
are directly assigned to the object vertices, from which fur-
ther rays are sent out. The primary vertices of the scene ob-
jects thus form the initial sample pattern necessary for the
sampling.

The analysis of the results of the ray tracing (of the sam-
ples) influences the refinement of the object geometry. Sec-
ondary vertices are generated, which in turn serve as the
starting point for a new sampling. The resulting sample val-
ues are finally interpolated bi-linearly via graphics hardware
and progressively displayed for each refinement step.

A detailed description of the vertex tracing method can be
found in 16� 17. To summarize, the method features the fol-
lowing advantages or disadvantages, respectively:

� A collision test of primary rays is obsolete, since the ge-
ometry of the VT objects, and hence their support points
(vertices), serves as the basis for further ray tracing.

� No additional object detection is necessary, since the pri-
mary object geometry is used as the starting point for fur-
ther triangulation.

� A combination of hardware-based rendering and ray trac-
ing is possible, since the representation of objects gen-
erated via ray tracing likewise is done by hardware-
supported rendering.

� Even in the case of few available samples, the rendered
scene yields a relatively good qualitative impression,
since the objects are maintained in their original geom-
etry and can be directly displayed as a "quick preview".

� Sampling of primary or secondary textures can be avoided
through refinement in object space and the use of hard-
ware rendering.

� In comparison to ray tracing (which behaves linearly), the
run-time behavior of vertex tracing is sub-linear with re-
spect to the number of pixels of the image.

� Vertex tracing scales linearly with the scene complexity,
while ray tracing has a sub-linear time complexity.

3.1. Hardware Accelerated Visibility Test

Because the primary rays are directly assigned to the primary
vertices, no visibility test needs to be carried out for primary
rays, in contrast to standard ray tracing. The visibility test

must therefore take place separately before the assignment
of primary rays, in order to avoid unnecessary sampling of
hidden primary vertices. After every change in camera posi-
tion, the visibility test is carried out as a pre-process before
the actual vertex tracing. It significantly determines the den-
sity of the initial sample pattern.

The test uses a modified form of the ID buffer principle 20,
as shown schematically in Fig. 3. Each face fi of a VT (ver-
tex tracing) object is assigned an unambiguous color ID and

0

0

0

0

0

0

0

0

0

1

f

1

1

1

2

0

f3 f4
f5

f

6

f7
f8

f10

f11

f12

f13

f14

0

1

1

f2
f3
f4
f5
f6
f7
f8
f9

f11

f12

f13

f14

f

scan line

visibility flag

unique color ID for each face fi

pixel color as index

ID buffer
VT-Object

face array

background color 0opaque OpenGL object

f

Figure 3: ID buffer test. The color ID of a pixel is used as
an index for the face array. Visibility flags are set only for
indexed faces.

rendered into the ID buffer. Objects that are not VT objects
(all other OpenGL objects) are assigned the color ID 0, as
is the background of the buffer. After the ID buffer has been
read into the main memory, each pixel acts as an index for
indexing a contiguous array of faces of all VT objects with
visibility flag set to 0. Scan line by scan line and pixel by
pixel, the ID buffer is then processed and the visibility flag
of the face to which the index points set to 1. All faces visi-
ble by at least one pixel are then marked as visible. From the
visibility of each face fi, conclusions about the correspond-
ing vertices can then be drawn.

c� The Eurographics Association 2003.

Ullmann, Preidel, Bruderlin / Efficient Sampling of Textured Scenes in Vertex Tracing

4. Reconstruction Without Explicit Texture Sampling

To reconstruct the sampled radiance function, hardware-
based Gouraud shading is used, carrying out linear interpo-
lation between the sample values. Similar to numerous ray
tracers we use for shading a slightly modified Phong shad-
ing model 22 to compute the local component Ilocal on each
vertex �vi (see Fig. 4). If we add the two global components
Ire f l and Itrans, the overall intensity I��vi� of a vertex �vi be-
comes:

I��vi� � Ilocal��vi� � krIre f l��pr� � kt Itrans��pt�� (1)

Ire f l��pr� represents the light intensity that arrives due to
reflection from a point �pr in �vi, taking into consideration
the attenuation factor kr . The same applies for the intensity
Itrans��pt� and the attenuation factor kt for transmission. Be-

k

r

t

v

p

p

j

local

trans

refl

i

i

i

t

r

v

I

I

I

I

v

()v

()v

()p

()p

eye point
reflected

object

transmitted
object

VT-Object

Figure 4: Principle of shading in vertex tracing.

cause the ray tracing is carried out recursively, I��vi� must
also be recursively determined. Taking Eqn. 1 as a basis, this
results in the following recursion for the example of the re-
flection components I��pr�:

I��p j
r � �

Ilocal��p
j

r � � k j�1
r Ire f l��p

j�1
r � � k j�1

t Itrans��p
j�1

t ��

j � 0�1� ����n (2)

where j is the number of recursion steps.

To reconstruct the sampled radiance function, hardware-
based Gouraud shading is used, carrying out linear interpola-
tion between the sample values. The faces generated from re-
finement are passed to the graphics hardware and displayed
accordingly. Vertex tracing is characterized by its hybrid ren-
dering character. Both rendering on the basis of local illumi-
nation models in the form of OpenGL rendering hardware,
and on the basis of a global illumination model in the form of
ray tracing, can be realized in parallel. The core issue in this
context is the differentiation of the scene objects. Specularly
reflecting objects are defined as VT objects and subjected to
vertex tracing. Objects that reflect primarily diffusely remain

"normal" scene objects (non-VT objects)� and are rendered
with conventional OpenGL rendering.

Textures, which are highly effective in the approximation
of complex material characteristics in traditional hardware-
based rendering or ray tracing, actually turn out to be rather
detrimental in adaptive ray tracing. The sometimes high-
frequency texture information may lead to increased sample

blending

rendering

u vi i

u vi i

u vi i

u vj j

u vj j

u vj j

u vk k

u vk k

u vk k

eye point
reflected

texture coordinates

reflected Object

primary texture

reflected texture

j

j

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

v

v

k

k

v

v

i

i
i

i v

vf

f

Figure 5: Integration of textures in vertex tracing. We get a
defined face, if all vertices point to the same face with one
texture.

generation, since the usable image coherence is significantly
reduced. A highly varying radiance function can result from
the continuous radiance distribution of an object representa-
tion after texturing. The advantage of adaptive sampling, i.e.
the reduction of the number of samples, could be dramati-
cally weakened. Methods such as proposed in 19 attempt to
deal with this problem, by carrying out measurements in tex-
ture space, from which further criteria for effective sampling
are derived.

A by far more efficient method than 19 is the additional
exploitation of object space information. If, for each sample,
only the corresponding texture coordinates are calculated,
foregoing an immediate texture lookup, adaptive refinement

� Diffuse objects may also be defined as VT objects, if other global
illumination phenomena (e.g. shadows) are to be simulated on these
objects.

c� The Eurographics Association 2003.

Ullmann, Preidel, Bruderlin / Efficient Sampling of Textured Scenes in Vertex Tracing

can also be carried out without consideration of the radiance
values saved in the texture. In our approach, the actual tex-
ture lookup occurs after refinement via hardware-based ren-
dering, in that an interpolation of the texture coordinates be-
tween the samples takes place.

Fig. 5 shows the fundamental approach with respect to
the use of textures in vertex tracing. Depending on the re-
finement process, new faces fi are generated. The control
of the refinement occurs without involving radiance values
from textures. In the example of Fig. 5, for each vertex �vi

of face fi, only the corresponding texture coordinates ur
i �v

r
i

(if they exist) of the reflecting objects are determined and
stored accordingly. The texture lookup does not occur until
the actual rendering process. Each face fi is then rendered
with its primary texture into the frame buffer. If a reflected
texture also exists, a rendering of fi with this texture addi-
tionally takes place. A suitable blend operation finally mixes
the textures in the frame buffer.

C3

C2

C1

background

C3

C1

C2

eye point

primary texture

j

j

v

v

k

k

v

v

i

i

i

i

v

v

f

f

blending

rendering

Figure 6: In case of different textures reflected from one face
we perform a texture lookup and interpolate the colors (case
of undefined faces).

The assignment of texture coordinates for a transmitted
object occurs analogous to the process for a reflected one. If
there are both reflected and transmitted textures, up to three
textures, including the primary texture, must be blended over
another in the frame buffer. With this method, sampling of
textures is completely avoided in the first recursion step.
This approach would also be conceivable in each further
step, but depends strongly on the existing hardware prereq-
uisites, since more than three textures per face would have
to be rendered. This is the reason for complete sampling of
textures based on their radiance values in recursion steps �

1.

If every vertex of a face fi features the same reflected or
transmitted texture, this is called a "defined face." If texture
coordinates from different textures of different objects ap-
pear, or if certain vertices have even no texture coordinates,
"undefined faces" result. As shown in Fig. 6, in this case the
radiance values are read directly from the texture. Accord-
ing to Eqn. 1, the determined color value, in combination
with the object’s primary color, determines the intensity at
the vertex�vi.

4.1. Multi-Pass Texturing

Once the texture coordinates of reflected and transmitted ob-
jects have been determined at each vertex of a defined face
fi, it is rendered. Based on Eqn. 1, the final fragment color
Cf rag in the frame buffer is determined by:

Cf rag � CprimCTprim � αr�Cre f lCTre f l �Cr�comb�

� αt�CtransCTtrans�Ct�comb� (3)

with Cprim�Cre f l �Ctrans the object’s primary color, CTprim,
CTre f l , CTtrans the texture color, and αr�αt the alpha value
as attenuation factor of the reflection or transmission, respec-
tively. It is assumed that the object color from the modulation
(GL_MODULATE) results from the primary color and the
texture color. Ccomb represents the combined color starting
with the second recursion step, resulting from an additional
reflection or transmission.

With simultaneous rendering of up to three textures on
a face, the application of multi-texturing is preferred. One
problem, however, is the widespread hardwiring of texture
units in graphics hardware. In OpenGL before Version 1.2,
a freely programmable combination of texture units was
largely impossible. The executable fragment operations are
pre-defined and do not allow mapping of Eqn. 3 (see also 21).

Without more flexible programming of the texture units,
as already supported in current OpenGL extensions and ap-
plied in Section 4.2, the only alternative remains multi-pass
texturing. In this case, rendering according to Eqn. 3 would
have to take place in up to five passes. In order to nonethe-
less avoid such enormously high rendering costs, Eqn. 3 can
be slightly modified. Already combining Cr�comb and Cre f l ,
or Ct�comb and Ctrans, before the texture modulation results
in

Cf rag � CprimCTprim � αr��Cre f l �Cr�comb� �CTre f l�

� αt��Ctrans�Ct�comb� �CTtrans�� (4)

Certainly, Eqn. 4 represents only an approximation of 3. The
modified color combination nonetheless allows addition be-
fore the actual rendering process, on the basis of which the
multi-pass texturing can be reduced to three passes. For each
pass, the primary object color is modulated with the texture
color in a texture unit, and written to the frame buffer. Start-
ing with the second cycle, writing takes into consideration
α-blending, as already shown in Fig. 5. On the one hand,

c� The Eurographics Association 2003.

Ullmann, Preidel, Bruderlin / Efficient Sampling of Textured Scenes in Vertex Tracing

the blend operation acts as an attenuation factor αr or αt ,
respectively; on the other, as an addition according to Eqn.
4.

4.2. Multi-Texturing

Only on modern graphics subsystems with integrated pixel
shader has it become possible, to carry out true multi-
texturing, as required by vertex tracing, in a single pass. The
representation of the texture shading function according to
Eqn. 4, however, cannot itself be explicitly carried out with
the functional scope of a pixel shader. The crux of the prob-
lem lies in the number of available color input registers. For
one pixel shader operation, only two colors can be defined,
the primary color and the secondary color; furthermore, the
latter must do without an alpha value. In the case of four tex-
ture units and two color inputs, for example, this means that
one color component is still missing for representation of the
shading function.

This can be remedied with the aid of the pass-through4.
According to Eqn. 4, three texture units are used by
CTre f l �CTtrans, and CTprim. If the graphics subsystem pos-
sesses a minimum of four texture units, the third color com-
ponent from 4 can be represented with the aid of pass-
through.

If the graphics subsystem possesses six or more texture
units, representation of Eqn. 3 is, on the basis of the pass-
through function, conceivable in a single pass. However, if
fewer than four texture units are available, at least two ren-
dering passes must be carried out. The addition between the
individual passes can again take place with blend operations.

5. Results

Vertex tracing was shown to significantly reduce the number
of samples through the use of graphics hardware. The in-
troduction of hardware-supported texturing allows a further
reduction in samples in the context of adaptive sampling. By
exploiting object space information in the form of texture
coordinates and using the methods presented here, textures
can even be included in higher recursion steps without ex-
plicit sampling of their radiance function. Fig. 7 shows an
example of this. Despite the radiance variance that appears
in the chessboard texture (discontinuities at the borders be-
tween light and dark fields), no denser sampling is necessary
for the texture reflections of the cup. The area of the textures
mirroring each other in 7b has been only minimally sampled.

With the presented method of texture integration we
achieve computation rates in real-time or close to real-time
of textured scenes. The cup shown in figure 7a with an image
resolution of 1280x1024 on a Dual-Athlon 1.35 GHz system
is rendered at preview quality in 130 ms (with or without tex-
tures); for a full quality image the rendering takes about 1.5
s. The total number of samples determined is about 47’000.

In contrast, it takes about 12.7 s to ray trace the same im-
age with a conventional ray tracing approach, using the same
data structures and intersection algorithm.

A combination of reflecting and transmitting textures is
shown in Fig. 8a. The simultaneous representation of a pri-
mary texture of the cup would likewise be conceivable here.
Fig. 8b further demonstrates the method’s efficiency. By
sampling only the primary vertices (preview representation),
the texture of the wall (the rendering of which occurs with
standard OpenGL) on the table surface, or that of the chess-
board pattern in the cup, is almost completely represented as
a reflection, so that a high degree of image quality is again
achieved at interactive frame rates.

A detrimental effect, which appears due to rasterization,
can be seen in Fig. 9. Specifically, Fig. 9a shows a par-
tially incorrect perspective representation of the reflected ta-
ble texture, in contrast to the correct representation via ray
tracing in 9b. The greatest distortion occurs especially in the
lower area of the cup, where the texture is stretched the most.
This effect appears more strongly when a reflecting or trans-
mitting texture is represented with only a few samples. The
cause of the distortions is the incorrect perspective correc-
tion by the hardware in the case of reflecting or transmit-
ting textures. One solution would be denser sampling in the
critical areas, as proposed in 7. Methods able to do without
a higher number of samples will be investigated in further
work.

The proposed visibility test enables discarding all non-
visible vertices and thus avoids unnecessary sampling of hid-
den scene geometry. The run time of the visibility test de-
pends strongly on the size of the image to be rendered, in
addition to the scene complexity. Because the frame buffer
is read from the graphics hardware, the bottleneck is located
here. Even with modern hardware, the buffer read time is
approximately 20-40 ms at a resolution of 1024x768 pixels.
The run time of the actual scan line methods from Fig. 3
is relatively insignificant in comparison (less than 10 ms at
1024x768 resolution for the examples shown). Of greater in-
fluence, however, is the rendering time necessary for the vis-
ibility test (first rendering pass), which in turn depends on
the complexity of the scene. Without the implementation of
culling mechanisms, rendering time increases linearly with
the size of the scene. Significant here is that with the aid
of the alpha channel, the entire rendering process can be re-
duced to a single pass. For this purpose, the scene is imme-
diately rendered into the frame buffer in "normal" fashion
for the visibility test, thus simultaneously serving as the fi-
nal representation. The primary faces are separately marked
with a code in the alpha channel. The scan line of the frame
buffer then relatively reliably filters out all primary faces and
sets the corresponding visibility flags.

c� The Eurographics Association 2003.

Ullmann, Preidel, Bruderlin / Efficient Sampling of Textured Scenes in Vertex Tracing

6. Conclusions

Vertex tracing allows not only the combination of OpenGL
rendering and ray tracing, but additionally offers an efficient
integration of Textures, through refinement in object space.
Despite the generally high radiance variance in textures,
it requires no additional sampling, even for textures from
higher recursion steps. The representation of the shading
function in a single texture rendering pass (multi-texturing)
was made possible by exploiting modern rendering hardware
in the form of the pixel shader. Additionally, vertex tracing’s
run-time performance was improved by the introduction of
the visibility test. The test allows a determination of only
relevant samples to avoid a sampling of invisible features.

Due to its sub-linear performance with respect to pixels,
vertex tracing is suitable for supplementing global illumina-
tion effects in traditional hardware-based rendering. Its ef-
ficient sampling and the possibility of selecting individual
VT objects are of benefit especially in virtual reality appli-
cations featuring geometrically accurate reflection investiga-
tions, for example.

References

1. John Amanatides and Alain Fournier, Ray casting using di-
vide and conquer in screen space, International Conference
on Engineering and Computer Graphics, August 1984, pages
290–296. f21g (1984). 2

2. T. Akimoto, K. Mase, and Y. Suengaga, Pixel-selected ray
tracing, IEEE Computer Graphics (1991), 11:14–22. 2

3. Y. Eldar, M. Lindenbaum, M. Porat, and Y. Zeevi, The farthest-
point strategy for progressive image sampling, In Proced-
dings, 12th International Conference on Pattern Recognition,
Jerusalem (1994). 2, 3

4. Sebastien Domine and John Spitzer, Texture shaders, Tech. re-
port, nVidia Corporation, http://developer.nvidia.com, 2000. 6

5. Baining Guo, Progressive radiance evaluation using direc-
tional coherence maps, Computer Graphics (SIGGRAPH
1998 Proceedings) (1998), 255–266. 2

6. Frederik W. Jansen and Jarke J. van Wijk, Fast preview-
ing techniques in raster graphics, Proceedings Eurographics
(1983), 195–202. 2

7. Manuel M. Oliveira, Correcting Texture Mapping Errors In-
troduced by Graphics Hardware, Proceedings Pacific Graph-
ics ’01 (2001), 31–38. 6

8. M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan, Render-
ing complex scenes with memory-coherent ray tracing, In SIG-
GRAPH 97 Conference Proceedings, Annual Conference Se-
ries, pages 101–108 (1997). 1

9. James Painter and Kenneth Sloan, Antialiased ray tracing by
adaptive progressive refinement, Computer Graphics (SIG-
GRAPH ’89 Proceedings) (1989), 281–288. 2

10. F. Pighin, Dani Lischinski, and David Salesin, Progressive
previewing of ray-traced images using image-plane disconti-
nuity meshing, Rendering Techniques (1997), 115–126. 3

11. Gunther Raidl and Wilhelm Barth, Fast adaptive previewing
by ray tracing, In Proceedings of 12th Spring Conference on
Computer Graphics (1996). 2

12. John Spitzer, Programmabel texture blending, Tech. report,
nVidia Corporation, http://developer.nvidia.com, 2000.

13. John Spitzer, Register combiners, Tech. report, nVidia Corpo-
ration, http://developer.nvidia.com, 2000.

14. Annette Scheel, Marc Stamminger, Jörg Pütz, and Hans-Peter
Seidel, Enhancements to directional coherence maps, url: cite-
seer.nj.nec.com/492134.html. 2

15. Seth Teller, Kavita Bala, and Julie Dorsey, Conservative radi-
ance interpolants for ray tracing, Rendering Techniques ’96
(Proceedings of the Seventh Eurographics Workshop on Ren-
dering) (1996). 2, 3

16. Thomas Ullmann, Daniel Beier, Alexander Schmidt, and Beat
Brüderlin, Adaptive progressive vertex tracing in distributed
environments, In Proceedings of Pacific Graphics ’01, Tokyo,
Japan (2001). 2, 3

17. Thomas Ullmann, Alexander Schmidt, Daniel Beier, and Beat
Brüderlin, Adaptive progressive vertex tracing for interactive
reflections, In Proceedings of EuroGraphics ’01, Short Presen-
tations, Manchester, UK (2001). 2, 3

18. I. Wald, C. Benthin, M. Wagner, and P. Slusallek, Interac-
tive rendering with coherent ray tracing, Proceedings of Eu-
roGraphics 2001 (2001). 1

19. Theo van Walsum, Peter R. van Nieuwenhuizen, and Fred-
erik W. Jansen, Refinement criteria for adaptive stochastic ray
tracing of textures, In Proceedings of Eurographics ’91, page
155-166, Amsterdam (1991). 4

20. H. Weghorst and G. Greenberg, Improved computational
methods for ray tracing, ACM Transactions on Graphics
(1984), 52–69. 3

21. Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner,
Opengl programming guide, third edition, Addison Wesley,
1999. 5

22. Alan Watt and Mark Watt, Advanced animation and rendering
techniques, theory and practice, Addison-Wesley Publishing
Company, Inc., 1992. 4

c� The Eurographics Association 2003.

Ullmann, Preidel, Bruderlin / Efficient Sampling of Textured Scenes in Vertex Tracing

a) b)

Figure 7: No sampling is performed for the radiance variance of textures. (Here, the reflection of the checker-
board in the cup doesn’t need any additional samples.)

a) b)

Figure 8: a) Combination of transmitted and reflected textures. b) In case that only the primary vertices were
sampled an almost complete representation of the reflected wall texture can be shown (preview repre-
sentation shown)

a) b)

Figure 9: a) Incorrect perspective representation of reflected or transmitted textures in Vertex Tracing. b) Correct
representation in case of standard Ray Tracing.

c� The Eurographics Association 2003.

