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Abstract

In the paper we present a novel algorithm for collision detection between complex geometric objects represented
by polygonal models and undergoing rigid motions and deformations. Most algorithms described in the literature
deal with rigid bodies and are based on some kind of hierarchical representations. We present the alternative
approach. The algorithm relies on the idea of "sensor particles": interacting particles distributed on a surface.
Two types of particles that interact in a special way are usedfor determining the minimum distance between two
models. The algorithm has been implemented and used in real–time simulation of dynamic interaction between
geometric objects. A detailed description of the algorithm, animation examples, and benchmarks are included in
the paper. A potential application of this software algorithm is collision detection for animation of bodies with
deformable surfaces.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Collision detection has been a fundamental problem in many
areas such as physics–based modeling, computer simulated
environments, computer animation and robotics. In general
the goal of collision detection is to report when a geometric
contact occurs. The problem has been well studied in liter-
ature. A good survey of collision detection problem can be
found in1.

There are different types of surface representation and
collision queries, depending on the application. Models can
be represented as constructive solid geometry (CSG), im-
plicit or parametric surface and so on. The surface of a body
can be static or can undergo deformations. In this paper, we
consider polygonally represented bodies with deformable
surfaces. Bodies of this kind often appear in computer an-
imation. These include articulated clothing, biological struc-
tures, and other soft or elastic objects.

In the simplest case, it is required to know whether two
models are touching. For example, this is useful when we
want to arrange bodies in a virtual environment. In computer
animation and physics–based simulation it is necessary to
know the separation (minimum Euclidean distance) between

bodies. Our algorithm can be used to solve all the problems
mentioned above.

The collision detection of polygonal objects has been
widely studied. Fast and robust methods have been proposed
(see for instance2� 3� 4 and5).

Most of the algorithms described in the literature deal
with rigid bodies and are based on some kind of hierarchical
representation that should be pre–computed before the simu-
lation starts. These algorithms become inefficient in the case
of deformable bodies, because an hierarchical representa-
tion should be updated after each simulation step. New algo-
rithms have been proposed recently to deal with deformable
bodies (see for instance6, 7). All such algorithms present
new types of hierarchical representation which can be effi-
ciently updated during body deformation.

In this paper we present an alternative approach. Instead
of creating and updating a hierarchical representation, we
use a set of interacting particles located on a surface. Two
types of particles moved under the action of attractive and
repulsive forces are used. We can exploit the distribution of
these particles to perform collision queries and describe one
of the possible implementations of the algorithm.
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We clearly understand the limitations of the proposed
technique. We should admit that the results of collision de-
tection cannot be sufficiently precise to be used for CAD ap-
plications. Nevertheless, high accuracy of collision detection
is not required in many other cases. For example, it is not a
significant issue for such applications as computer games.
As our experiments show, the algorithm provides reasonable
accuracy of collision detection by using only a few particles.
For sufficiently smooth concave surfaces with over 10000
polygons, 3–5 particles constantly evolving in the collision
detection process prevent an object from moving through an
obstacle.

The rest of the paper is organized as follows. The next sec-
tion gives an overview of the collision techniques. In Section
3 we present a detailed description of a particle–based colli-
sion detection algorithm. Section 4 contains notes about soft-
ware implementation of the proposed algorithm. In Section
5 we show examples of animation and speed benchmarks.
Section 6 contains conclusions and overview of the future
work.

2. Previous Work

The collision detection problem has been widely studied in
the literature. Various techniques have been proposed in or-
der to speed up the intersection tests between body pairs.

Bounding volume hierarchies seem to be a very effi-
cient data structure for rapid collision detection of rigid
bodies. These include spheres2� 8� 9, Axis Aligned Bounding
Boxes (AABBs)10� 11, Oriented Bounding boxes (OBBs)12,
k-DOPs5� 13, Quantized Orientation Slabs with Primary Ori-
entations (QuOSPOs)14, and spherical shells15. The men-
tioned methods deal with rigid bodies. In the case of de-
forming bodies, they are not so useful, since these methods
rely on pre–computed data which cannot be efficiently up-
dated in real time. There are many papers on collision de-
tection, but less work has been done on deformable bodies.
Optimized hierarchical method16 also exists, and it is more
effective both for rigid and deforming objects.

Fast continuous collision detection method, that works
well for rigid bodies, was also introduced recently in the pa-
per by Redon et al.17.

Several other approaches are based on the idea of bound-
ing representation, that approximately models an object with
simple primitives such as rectangles. Efficient algorithms
(see, for example,18), determine if collision has occurred
between the bounding representation and only then compo-
nents of the original model are examined.

A good overview of the animation and collision detec-
tion problems can be found in book19. A survey20 presents
the state of the art in animation of non–rigid bodies. In par-
ticular, models based on the physical theory of elasticity in
continuous media and discrete mechanical models that in-
tegrate discrete mechanical components are observed. This

survey demonstrates some optimization techniques for spec-
ifying constraints on the behavior of objects and collision
detection and response algorithms.

A general collision detection method for deformable ob-
jects has been proposed in21. This method deals with trian-
gle soups freely moving in space. However, the high perfor-
mance of this method breaks down when the overlap region
is large and includes many geometric primitives. Another ap-
proach has been suggested in7. AABB trees are built for
each model. The affected nodes in the trees should be up-
dated when a model is deformed. Improvement of this algo-
rithm can be found in6.

Some new bounding volume hierarchies have been pro-
posed recently. For example, Restricted BoxTrees22 demon-
strate very good construction time and also good time in
overlap test.

Some other algorithms are also available for flexible
objects23� 24. Some methods are designed for bodies under-
going polynomial deformations25.

Let us notice that, in spite of their effectiveness, standard
techniques are expensive in the sense of required memory
to store the hierarchical structure; such game consoles as
SEGA Dreamcast, Sony PlayStation–2, and others are very
powerful, but they are typically limited in memory. The ob-
jects that are traditionally used in animation examples have
time–dependent but plain surfaces. Detailed surfaces can
contain a lot of polygons and have memory limitations for
using the hierarchical structures.

Our algorithm exploits the idea of tracking the closest
features of bodies. There are various methods26� 27 based on
this approach. These methods use pre–computed Voronoi re-
gions or treat a body as a convex hull of a point set and op-
erate on simplices defined by subsets of these points. These
methods are inefficient in the case of deforming bodies.

The 1990s witnessed a growing interest in the develop-
ment of algorithms based on so-called particle systems, in
particular for nonphotorealistic rendering28� 30 and for resam-
pling of polygonal surfaces29.

We study the opportunities to use particle systems by
looking at simulation of dynamic interaction between rigid
bodies with time–dependent polygonally defined surfaces in
3D space. The desired number of particles are spread on the
surfaces, and their positions are equilibrated by using mutual
repulsive and attractive forces. Then the distance between
particles is used to identify the collision area.

3. Algorithm

3.1. Assumptions

At this stage of our project, we are applying our approach to
models that satisfy the following geometric and deformation
conditions:
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� Each model has a surface that is for the most part plain.� Face’s adjacency information is available, i.e., there is a
list of neighbor faces for each model point. If not, it can
easily be created.� Adjacency information does not change during deforma-
tion. This means that bodies do not change their topology.� The model remains plain for the most part and the number
of convex parts does not increase greatly during deforma-
tion.

All these assumptions are valid for various types of mod-
els used in animation and computer games.

3.2. Particles

We use two types of particles, by analogy with electric
charges. Particles of the first type are placed on the first
model; particles of the second type are placed on the second
model.

3.3. Interaction

Interaction pursues two different purposes. First, particles of
different types should attract each other in order to move to
the closest features. This can be done by creating attractive
forces between particles of different types.

Second, there should be some interaction, to prevent par-
ticles of the same type from gathering in one region of a
model. We add a repulsive force between particles of the
same type.

Radial attractive and repulsive forces act on particles. The
total force

�
Fi which acts on ai–th particle is the vector sum

of the forces emanating from all other particles:�
Fi
� n

∑
i�0

f
�
i � j �r i j ��r i j �

Unlike the law for electric charges, the laws for repulsive
and attractive forces can be different. Repulsive and attrac-
tive laws can also be different for different types of particles.
We use two functions,fr and fa, for repulsion and attraction
accordingly:

fr
�
r � � 1

r2 �
fa
�
r � � � 0� r 	Re f f

1
r2 � r 
Re f f

�
whereRe f f is the effective radius of attraction.Re f f should
be approximately equal to the linear dimensions of the
model.

In general, the initial positions of particles only affect the
time of the first collision query. Therefore, it is not very im-
portant where particles are located initially. In practice, ran-
dom distribution works well enough.

3.4. Movement of particles

In the simplest case, particles can be located only at vertices.
In this case, we can easily calculate the potential of forcesin
every neighboring vertex and move a particle to the vertex
where the potential has the minimum value.

This technique can be generalized for cases when the par-
ticle can be located on edges and faces. We need coordinates
of surface points in the neighborhood of a particle. These co-
ordinates can be obtained from adjacency information. Also
accuracy of collision detection can be improved by perform-
ing additional exact check for faces in particles neighbor-
hood, i.e. in the area where collision is very probable. The
size of this neighborhood should depend on sizes of faces
which contain vertex particle located at.

3.5. Collision query

Tracking separation between models can be done efficiently,
by tracking the distance between particles, as long as we
assume that the number of particles is at least equal to the
number of convex parts of the model. In practice the number
of particles should be twice as much as number of convex
parts of the model. This guarantees that separation between
models will be tracked efficiently. So the number of particles
needed can be determined automatically by analyzing model
geometry27.

At every collision query we turn on an interaction between
particles and wait for the particle system to relax. In prac-
tice particles occupy some places and movements stop rather
soon (this situation corresponds to some local minimum of
the system energy). Two numbers,Nmax andNmin, are used
to control a particle system to reach almost relaxed state.
Nmax is the maximum total number of interaction steps and
Nmin is the minimum number of moving particles. Therefore,
we wait until either the number of particles moved in interac-
tion step is less thenNmin or the number of interaction steps
becomes equal toNmax.

Then we can measure distances and find the closest par-
ticles of different types (this pair can also be efficiently
tracked during interaction). If the distance between these
closest particles is less then some tolerance distance, theex-
act test should be performed in order to find the intersection
of particles’ neighbor faces. However, many practical tasks
do not require such an exact test to be performed.

Collision query of every next simulation step can be
performed very fast, if the positional relationship changes
slowly. The particle–based approach allows us to capture the
temporal and spatial coherence between successive checks
easily, even for deformed models.

The values ofNmin andNmax depend on the model’s ge-
ometry and number of particlesn placed on the model.Nmax

should be approximately equal to the number of vertices
between particles placed on the model, i.e. the maximum
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length of the possible shortest routes between any two parti-
cles on the model. Our experiments show that about 10% of
particles, in average, are placed near equilibrium position.
By this meansNmin should be about 10 times smaller then
number of particlesn.

The complexity of performing collision query isO
�
n2�,

where n is the number of particles. Since under above–
mentioned assumptions the number of particles is essentially
smaller than the number of polygons, this complexity allows
us to perform fast collision queries even for models with a
large number of polygons.

However, the performance can be noticeably improved, by
using caching on the initial steps. If positional relationship
changes slowly, the influence of distant particles remains al-
most constant. Thus we can efficiently cache this influence,
and we do not need to perform time–consuming calculations
on each iteration.

4. Software implementation and collision response

The proposed algorithm has been implemented in C on top
of the OpenRM31 scene graph.

The particles interactions and bodies’ movements can
be implemented either in a single thread or in two sepa-
rate threads. Additional performance improvement can be
achieved on multiprocessor systems in the second case.

For models’ deformations we use compactly supported ra-
dial basis functions (CSRBF) as proposed in32. This allows
us to define local smooth deformations simply by using a
moderate number of control points.

A general solution for the collision response of two arbi-
trary rigid bodies involves solving a set of 15 linear equa-
tions in 15 unknowns, as described in23� 33. In our software
implementation we use another approach, which is simple
and effective in terms of the calculation time. For the sake
of simplicity, we do not take into account the velocities of
bodies’ surface points concerned with deformation. We use
a notion of effective mass and pulse to calculate the collision
response. Letm be mass of the body;Icx, Icy, Icz — the mo-
ments of inertia in the central main axis coordinate system
(oxyz); V — the velocity of the center of mass in the world
coordinate system (OXYZ); wc — the angular velocity in
oxyz; n — the normal inOXYZ; nc — the normal inoxyz;
andrc — the radius–vector to the collision point inoxyz.

Denote �rc �nc� as lc � �
lcx�lcy�lcz�. Then the effective

mass can be found as

me
� m

1� ml2cx
Icx

� ml2cy
Icy

� ml2cz
Icz

�
The moment velocity alongn is

u � ���V�n�� ��wc �rc��nc��n �

Thus, the effective pulse is

p � �n
m
��

V�n�� ��wc �rc��nc��
1� ml2cx

Icx
� ml2cy

Icy
� ml2cz

Icz

�
The pulses after collision can be found as

p�1 � �
me1

�me2�p1 �2me1p2

me1 �me2
�

p�2 � �
me2

�me1�p2 �2me2p1

me1 �me2
�

Finally, we can change the velocity and angular velocity as

V� �V � ∆p
m �

w�x �wx � Lcx

Icx
�w�y �wy � Lcy

Icy
�w�z �wz� Lcz

Icz
�

where∆pc is the applied pulse inoxyz, andLc
� �rc �∆pc�.

These results were deduced from laws of conservation of
energy, momentum and angular momentum for rigid bodies.
The complete proof of the above equations is omitted.

5. Results

We tested our software implementation on different polygo-
nal models (obtained for simplicity from implicit models of
the alphabet letters).

Figure1 shows two polygonal models of the letter "T",
defined by 1380 polygons and the distribution of 3 particles
(shown red and blue) on each model. We found that even a
very small number of particles (2–3) is enough to define a
sufficiently correct collision point.

We tested the performance of our systems by produc-
ing various CSRBF deformations. Four frames from the our
test animation using two polygonal models of the letter "M"
(model defined by 2968 polygons, CSRBF deformation de-
fined by 14 control vectors) and letter "V" (model defined
by 1764 polygons, CSRBF deformation defined by 12 con-
trol vectors) are shown in Figure2.

The most important benchmark for our system is the time
needed to perform collision query. This time depends on sev-
eral parameters, including the size of the model, the number
of particles, the speed of models’ movement, and the dis-
tance between models. For example, for sufficiently small
models (two polygonal models of letters "T", 1380 polygons,
3 particles on each model), the maximum time needed to per-
form collision detection query was 11 ms., and the average
time on active interval was less than 1 ms. For larger mod-
els (two polygonal models of letters "W", defined by 11920
polygons, 5 particles on each model), results are shown in
Figure3. These tests were performed on a PC with an Intel
Pentium 4 2.53 Ghz processor.
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Figure 1: Illustration of particle distribution.

Figure 2: Illustration of collision detection between two
models undergoing CSRBF deformations.

6. Conclusions

A new method based on using particle systems for colli-
sion detection has been presented. The method is used for
simulation of dynamic interaction between rigid bodies with
time–dependent polygonally defined surfaces in 3D space.
The experimental results presented in the paper show that
the proposed algorithm can handle sufficiently complicated
animation situations in real time.

At the current stage of the project, we have studied only
the simple case of collision between two bodies; our future
plan includes generalization of this technique for several
bodies and other improvements. We have described one of
the possible implementations of the algorithm; nevertheless,
there are no limitations for combining the particle–based ap-
proach with existing collision detection techniques for reli-
able and precise searching of collision points for face inter-
sections.

The algorithm was implemented in C and tested on a PC
under Microsoft Windows, Linux, and FreeBSD operating
systems. Implementation is simple and can be easily adapted
for special environments (game consoles, etc.); performance
can be improved by using special hardware instructions.

Figure 3: Benchmarks. Collision detection between two
polygonal models of letters "W", defined by 11920 polygons,
with 5 particles on each model. The average time needed
to perform a collision detection query on active interval
(queries nos. 950–1984) was 12.67 ms., and the maximum
time was 47 ms.; average time during the "warming" steps
(queries nos. 1–49) was 12.06 ms., maximum time was 47
ms. also.

The proposed technique is entirely novel, some points are
still unclear and require further research; however, we be-
lieve that the proposed technique for collision detection can
draw further attention from the CG community.
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