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Abstract
This paper describes the preliminary results obtained using an iterative method for generating a set of triangle
strips from a mesh of triangles. The algorithm uses a simple topological operation on the dual graph of the mesh,
to generate an initial stripification and iteratively rearrange and decrease the number of strips. Our method is a
major improvement of a proposed one originally devised for both static and continuous level-of-detail (CLOD)
meshes and retains this feature. The usage of a dynamical identification strategy for the strips allows us to dras-
tically reduce the length of the searching paths in the graph needed for the rearrangement and produce loop-free
triangle strips without any further controls and post-processing.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling – Geometric algorithms, languages, and systems

1. Introduction

A triangle strip is a set of connected triangles where a new
vertex implicitly defines a new triangle. Triangle strips are
used to accelerate the rendering of objects represented as
triangle meshes, in a pre-processing stage the mesh is par-
titioned in a set of triangle strips (possibly composed of one
isolated triangle) and then each strip is passed to the Graph-
ics Processing Unit (GPU) for rendering. The advantage of
the strip representation over rendering each triangle sepa-
rately, is that it makes it possible to reduce the number of
vertices sent to the GPU from3n (wheren is the number of
triangles in the mesh) ton+2 in the best case.

Given the current advances in computer architecture, re-
sulting in having the CPU-GPU communication as the most
common bottleneck of the whole visualization process, it ap-
pears evident that a good stripification strategy could virtu-
ally improve by a factor of three the CPU-GPU bandwidth
(at the best case, when a single strip, representing the whole
mesh, is produced) and, consequently, the whole visualiza-
tion.

Unfortunately it has been proven8, 1 that a problem equiv-
alent to searching the optimal single strip (finding a Hamil-
tonian path on the dual graph) is an NP-complete prob-

lem, thus the stripification process should be based on local
heuristics.

We decided to follow an approach consisting of operating
on the dual graph of the mesh (as described in details in sec-
tions 3 and4) using a single topology operator, previously
referred to as atunnelling operator16. Since we can apply
the operator to a general dual graph we show that we can use
our algorithm in two ways: to optimize an existing stripifi-
cation or to generate a new stripification from scratch. The
implementation of the algorithm relies on a single relevant
parameter, thetunnel length, which influences both the time
spent to stripify the mesh and the final set of strips obtained
(number and mean length). Thus is very easy to use even for
non expert users.

As in the original formulation we retain the property to
apply the algorithm to Continuous Level of Detail meshes
(CLOD) making it possible to repair the stripification when
adding triangles in case of progressive transmission of the
mesh10.

The rest of this work is organized as follows: in section2
we briefly go over the previous work done in geometry com-
pression, focusing on stripification; we then show, in section
3, the relations existing between the triangle mesh and its
dual graph and introduce the tunnelling operator; section4
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is dedicated to point out the differences between our imple-
mentation and the original proposed by Stewart; in section
5 we show the preliminary results obtained using our algo-
rithm on several meshes widely used in literature for bench-
marking; and, finally, in section6 we draw our conclusions
and describe the future evolutions of this work.

2. Previous Work

The termgeometry compressionapplies to two separated but
largely overlapping tasks:

• Reducing the data (triangle mesh) size to be sent over the
network;

• Changing the way in which the triangle mesh is described
when sent from the CPU to the GPU.

2.1. Geometry compression

Deering3 in 1995 was the first to introduce the termgeom-
etry compression, to describe a set of techniques capable of
reducing the space occupancy of ageneralized triangle mesh
statistically encoding XYZ positions, RGB colors and nor-
mals. These techniques operate mainly on thegeometryof
the mesh (i.e., the positions and the attributes of the vertices)
relying on the triangle mesh structure to compress the infor-
mation on thetopology(i.e., how the vertices are connected
to form the triangles).

Subsequent works10, 17, 18, 9, instead, centered their atten-
tion on the problem of compressing the description of the
topology arriving at a relevant result with the Edgebreaker
method13, 14 proposed by Rossignac in 1999 which uses less
than two bits per triangle to encode a planar mesh homeo-
morphic to a disc.

All these techniques need a decompression stage that is
not yet implementable in commercial graphics hardware,
even using new programmable boards. This means that they
are very efficient for transmission and archiving but cannot
be used for feeding the GPU.

2.2. Stripification Techniques

Rearranging the order in which the vertices are stored is
another way to face the problem. The strips obtained are
smaller than the original mesh when coming to the final ren-
dering since, while the single triangle needs 3 vertices for its
visualization to be sent to the GPU, the triangle strip needs
n+2 vertices to be sent to the GPU to rendern triangles. The
optimal single strip encoding the whole mesh would reduce
the number of vertices sent to the GPU by a factor of three.

The great advantage of using triangle strips consists of the
availability of such a primitive in the OpenGL graphics li-
brary. Generating a stripification of a mesh means to be able
to feed the GPU with the obtained structure without any fur-
ther effort. It is actually to point out that OpenGL supports,

without any vertex replication, only the sequential triangle
strips. Generalized strips could thus bring to send more than
once some vertices to the GPU. It is beyond the scope of our
current implementation to tackle this problem, but we plan
to investigate this.

This explains why a lot of effort has been spent in elabo-
rating good heuristics to stripify a mesh7, 2, 15, 19, 5, 4, 12, 6.

It is worthwhile to explicitly mention a technique11 that
uses a greedy algorithm to take advantage of the caching
strategy of the graphics boards, thus differentiating in a way
from the others cited, and the work16 that first proposed to
use the tunnelling operator on the dual graph, which is de-
scribed in details in the next section.

3. The Triangle Mesh and its Dual Graph

Each triangle mesh can be alternatively represented by its
dual graph. It is a graph in which each node is associated
to a triangle of the original mesh and an edge represents an
adjacency relation. One trivial property of such a graph is
that each node has, at most, three incident arcs. In case the
original mesh is homeomorphic to a sphere and has genus 1,
each node has exactly three incident arcs (see figure1).

Figure 1: A triangle mesh and its dual graph.

3.1. The Tunnelling operator

The tunnelling algorithm, as proposed by Stewart16, per-
forms the stripification of the mesh using a simple topologi-
cal operation on its dual graph.

To do so we need tocolor all graph edges in two possible
ways (see figure2):

solid edges linking nodes associated to triangles in the same
strip;
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Figure 2: A stripified mesh (each color encodes a different
strip) and its dual graph.

dashed edgeslinking nodes associated to adjacent triangles
not belonging to the same strip.

In every node there are, at most, two incident solid edges.
The nodes with only one incident solid edge areterminal
nodes(corresponding to terminal triangles of the stripifi-
cation). The nodes with three incident dashed nodes corre-
spond to isolated triangles in the stripification.

The first step of the operation consists, then, of searching a
special kind of path in the graph calledtunnel. A tunnel is an
alternating sequence of solid and dashed edges, starting and
ending with a dashed edge, connecting two terminal nodes.
Its length is always odd and we denote byk-tunnel a tunnel
of lengthk.

If a tunnel is found, the second step consists, simply, of
complementing the path, that is, changing each solid edge in
a dashed edge and vice-versa. After this operation the num-
ber of solid paths (strips in the triangulation) on the graph is
reduced by one. See figure3 for example.

It is quite easy to understand how this technique can be
used both to improve an existing stripification or to create
a stripification from scratch. In the latter case the starting
dual graph will have only dashed edges and every path of
length one can be chosen as a tunnel. It is worthwhile to
point out that isolated triangles are always considered as ter-
minal nodes of a one-triangle strip.

The main problem when implementing the algorithm
is the possibility that the graph traversal for tunnelling
could select paths that, when complemented, would gener-
ate loops. It is thus necessary to follow two additional rules
(we can call them theno-loop rules) during the tunnel search
to avoid this situation:

1. The last edge in a tunnel cannot connect two nodes be-
longing to the same strip (see figure4).

2. When a non-final dashed edge,e say, in the tunnel joins
two nodes belonging to the same strip, the next solid edge
should go back in the direction of the leading node ofe
(see figure5).

To be able to respect the no-loop rules, it is necessary to

Figure 3: An example of tunnelling. In the top row a 1-tunnel
is found; in the bottom row there are no 1-tunnels but only
a 3-tunnel. Notice that the number of strips decreases from
three to two after the first operation and to one after the
second.

Figure 4: An incorrect tunnelling that generates a loop.

distinguish between the different strips in the graph. This
is done tagging each node of the graph (triangle) with an
identifier corresponding to the strips it belongs to.

3.2. Tunnelling on CLOD

As stated by Stewart16 a great advantage of the tunnelling
technique over other stripification techniques is that it can
used to repair triangulations that are damaged by changes in
mesh topology, such as occur in CLOD meshes. Even if it
is not yet possible with the present version of our algorithm
to apply the tunnelling operator to progressive meshes, we
regard to this as the first feature to add in the future.

4. Our approach

It should be clear, by now, how a stripification via the tun-
nelling operator is performed on a generic triangle mesh:

1. Generate the dual graph of the triangulation;
2. Perform a breadth-first search, starting from a randomly

chosen terminal node, finding the shortest valid tunnel
(i.e., a tunnel not violating the no-loop rules) if one exists;
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e

e

Figure 5: The non-final edgee in the tunnel joins two nodes
belonging to the same strip. Of the two next possible steps,
we must select the one corresponding to the direction that
comes back to the leading node ofe (bottom row), otherwise
it will generate a loop (top row). One such step always exists
because the leading and trailing nodes ofe are in the same
strip.

3. Complement the edges of the tunnel;
4. Iterate the process until no more tunnels are found.

To prevent loops, to each strip in the graph one associates
a unique identifier, and each node in the graph is tagged with
the identifier of the strip it belongs to. The isolated trian-
gles are all tagged with different identifiers. When comple-
menting the tunnel edges, the strips identifiers change and
we should define a strategy to update the node identifiers
accordingly. Recall that a node identifier changes when a
dashed edge switches to a solid edge; the node id changes
taking the identifier of the previous node in the tunnel. More-
over, the update should propagate to the other nodes belong-
ing to the same strip (see figure6).

Figure 6: Identifier propagation along a strip. The identifier
is color coded.

To avoid a connection between nodes belonging to the
same strip (a loop), it is necessary to check that these nodes
do not have the same identifier. In the original tunnelling
algorithm16 the node’s identifier was checked only at the be-
ginning of the search (using astatic identifierstrategy); in-
stead, it is essential to update the identifiers of nodes at each

step of the tunnel construction (using adynamic identifier
strategy). Only in this way the algorithm is robust and the
no-loop rules are enough to prevent the creation of any loop
(see figure7).

Figure 7: An example of tunnel producing a loop even re-
specting the no-loop rules. In this case, our dynamic id prop-
agation strategy prevents from generating a loop.

To explain how we implemented the dynamic identifier
strategy, we need to introduce a new definition.

There are two kinds of nodes traversed during the tunnel
construction:

primary nodes Nodes that are part of the tunnel;
secondary nodesNodes whose identifier is updated, be-

cause they belong to the same strip of a primary node.

In each tunnel search it can happen that a node is traversed
more than once. To prevent loop creation one should con-
sider that a primary node cannot be visited, asprimary, more
then once. Instead, primary and secondary nodes can be vis-
ited, assecondaries, an arbitrary number of times.

The original proposed mechanism to prevent triangles
loop creation was to follow very restrictive rules about pri-
mary and secondary nodes. Doing so no dynamical id update
is required if a node can be visited only once, both as primary
or secondary node. This choice considerably reduces the al-
gorithm and data structure complexity. On the other hand,
this limits strongly the search and forces us to discard many
in-principle valid paths. As a consequence, as evident in the
next section, the whole stripification process is limited, and
the time efficiency is poor because the breadth-first search
depth is too long.

4.1. The Data Structure

Our implementation of the tunnelling algorithm is not trivial,
since it requires a supporting data structure able to keep track
of the dynamical identifier update. Moreover, since the data
structure should support anundo operation, we should, in
fact, be able to discard any change, if the tunnel search do
not end successfully.

We chose to implement the dual graph using a double
linked random access triangle list. Each element of the list, a
graph node, stores at most three links to each adjacent trian-
gle. The status of each link (solid or dashed) is represented
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by a logical flag. To support the dynamical id strategy, the
flag is already changed during the tunnel search but it is pos-
sible to backtrack the change in case the search does not end
with a valid tunnel.

We use a more complex structure for node identifiers. We
use a flag to mark a node as visited as primary (it can happen
only once). Since a node can be visited, as secondary, an
arbitrary number of times, a single temporary identifier is not
enough. Instead, we have a stack of identifiers in each node,
to manage identifier changes with standard push (update the
node identifier) and pop (discard the last update) operations.

5. Results and Discussion

The tunnelling algorithm behavior depends mainly on two
parameters. One parameter, explicitly set by the user, is the
tunnel length, the other, chosen by the algorithm, is the set
of starting nodes in the graph.

By increasing the tunnel length, we trade off an improve-
ment of the quality of the stripification for an increase in
computing time. Our results show that the tunnelling algo-
rithm is able to produce a stripification with a small num-
ber of strips even when it starts from a mesh with several
hundreds thousands of triangles, if we use long enough tun-
nels. The length, anyway, is quite small (we never exceeded
sixty), compared with the results reported by Stewart (up to
tunnel of one thousand steps).

5.1. Stripification Quality

In figure8 we show the number of stripes vs maximum tun-
nel length obtained stripifying four different models very of-
ten used for benchmarking (details in the figure caption). In
all the cases, the algorithm has been used to generate stripe
from scratch. To take in account the variations given by the
random starting nodes selection, we performed ten different
runs with different starting points. The values reported in the
graphics correspond to mean values. For a more quantitative
judgement, we also report the values in table1.

In table2 we compare the number of strips obtained, re-
spectively, by our algorithm, the original tunnelling algo-
rithm and the SGI algorithm on the Stanford bunny and
dragon models. We compare the results only for these two
models because they are the only ones for which we have
homogeneous data available. It is evident the improvement
obtained with the dynamic identifier strategy.

5.2. Time Performance

We compared the tunnelling algorithm time performances
with the original tunnelling algorithm and a stripification
method based upon the SGI algorithm. The comparison is
not totally accurate since it is impossible to drive the algo-
rithm to produce exactly the same number of strips, but the
differences are irrelevant.

(a)

(c)

(b)

(d)

Figure 8: Number of stripes vs maximum tunnel length for
(a) NVidia simplified bunny (1,999 tris), (b) UNC oil-pump
(20,544 tris), (c) Stanford bunny (69,451 tris) and (d) Stan-
ford dragon (871,414 tris). All the benchmarks done on a PC
with a Pentium IV 1.7 GHz CPU, with 256 MB of RAM.

Table 1: Results of the stripification of the models listed in
figure 8 at different maximum tunnel length. The stripifica-
tion of the dragon gives memory faults when increasing the
maximum tunnel length over 45.

Tunnel NVidia Oil Stanford Stanford
Length Bunny Pump Bunny Dragon

1 70 466 1,733 23,900
5 30 213 671 7,805
9 17 102 353 3,211
13 10 59 203 1,622
17 7 38 142 1,040
21 7 25 96 808
25 5 18 75 673
29 5 14 60 610
33 4 13 44 577
37 4 9 37 554
41 4 7 36 541
45 3 7 29 517
49 3 4 27 -
53 3 5 25 -
57 3 4 22 -

The comparison with the original tunnelling algorithm
shows (results are reported in table3) how our algorithm
becomes much more efficient on large datasets. We limited
our stripification quality to match the results reported. No-
tice that the maximum tunnel length used in this case is not
the maximum overall.

The comparison with the SGI algorithm is not obvious.
Our results are largely better then SGI in term of number of
strips and mean length. We cannot, thus, apply the two meth-
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Table 2: Number of strips obtained by the SGI algorithm,
the original tunnelling algorithm and our algorithm from the
Stanford bunny and the Stanford dragon.

Model SGI Original Our
algorithm algorithm algorithm

Bunny 648 158 22
Dragon 17,401 1,798 517

Table 3: Time in seconds to obtain almost the same number
of strips by the original tunnelling algorithm and our algo-
rithm on the Stanford bunny (158 strips, maximum tunnel
length=17) and the Stanford dragon (1,798 strips, maximum
tunnel length=13). Times are scaled to take in account dif-
ferent CPU speed.

Model Original Our
algorithm algorithm

Bunny 17.40 23.33
Dragon 13,500.00 699.08

ods at the same data set and simply compare the execution
time, because the final results are somehow different: using
the tunnelling method we obtain much less strips in more
time. Using the tunnelling method to reproduce the results
obtained with the SGI one, that is a stripification with about
the same number of stripes, we tried to compare execution
time with the same final result (without any considerations
about stripe quality). In this case, as we can see in table4,
the times are of the same order of magnitude.

6. Conclusions and Future Work

We described a stripification algorithm based on a simple
topological operation on the dual graph of the triangle mesh
that is robust and easy to use. Only one parameter is needed
to drive its execution. This is a major performance and qual-
ity improvement over a similar algorithm proposed. The pre-
liminary results obtained make us confident that we shall be
able to implement a version of the algorithm capable to op-

Table 4: Time in seconds to obtain almost the same number
of strips by the SGI algorithm and our algorithm on the Stan-
ford bunny (705 strips, maximum tunnel length=3), and the
Stanford dragon (17,653 strips, maximum tunnel length=3).

Model SGI Our
algorithm algorithm

Bunny 0.57 1.94
Dragon 7.08 22.52

erate also on CLOD meshes. It could be used to repair the
inconsistencies in the stripification of a LOD when inserting
new triangles.

The choice of the search seeds is still an open issue. We
plan to elaborate on strategies different from the current ones
that choose randomly the starting node and move at random
in the graph. One goal of such a strategy should also be the
generation of strips being as much sequential as possible,
to accommodate the current requirements of the graphics li-
braries.

We also plan to investigate the limits of the stripification
algorithm when applied to huge meshes, eventually adopting
an out-of-core scheme allowing the stripification of meshes
of any size.
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