
EUROGRAPHICS 2003 / M. Chover, H. Hagen and D. Tost Short Presentations

© The Eurographics Association 2003.

VelvetPath – Layout Design System with Sketch
and Paint Manipulations

Hiroaki Tobita

Interaction Laboratory,
Sony Computer Science Laboratories, Inc

tobita@csl.sony.co.jp

Abstract
We describe the VelvetPath system, a system that allows users to design layouts for visualized informa-
tion by using sketch and paint manipulations. Many systems enable users to visually search and browse
through information by treating the data as visualized nodes (e.g., related images and simple figures).
While these layouts are pre-defined and useful for the applications considered by the designers, users
cannot freely change or redesign the layouts. In contrast, users of the VelvetPath system can freely design
and change layouts by simply drawing strokes. Since the information layouts are defined automatically
according to the user’s strokes, the user can create layouts based on his/her own needs and retrieve in-
formation using these layouts. Moreover, because all the manipulations in the system are based on simple
sketching and painting interactions, the system is easy to use. These simple manipulations are useful not
only for information retrieval, but also for a wide variety of applications such as 2D and 3D content
creation, preparing slide presentations, and communication through a computer. In this paper, we de-
scribe our VelvetPath system and how it can be effectively applied.

Keywords:
Layout Design, Sketch and Paint Interactions, Information Retrieval, Contents Creation, Presentation.

1. Introduction
As computer hardware and software improves, it has

become possible to more quickly express a wider variety
of information (e.g., images, movies, documents, and
web pages). In addition, many types of computer (e.g.,
augmented reality (AR) systems and personal digital
assistants (PDAs)) have been developed to allow users
to naturally interact with the information space.
Although there are many opportunities to use particular
information layouts to handle data sets (e.g., for
information retrieval, presentation, creation, and
communication), most users still use simple linear and
rectangular layouts that are supported by the computer’s
operating system (OS) or a pre-defined layout produced
by software. As data and computer types continue to
proliferate, though, there will be a growing demand for
effective layout techniques that enable users to interact
with their computers more effectively.

While considerable research has been done to
support the use of information visualization [1] for
retrieving information, existing visualization systems are
not designed to treat all data sets in a common way.
Actually, by applying visualization techniques such as
zooming and scaling [3,4,5], specialized systems can be

designed to enable efficient visualization of huge
amounts of data. However, such systems are not
effective for simple visualization of moderate amounts
of data. Particularly, in the case of 3D layouts [6,7,8],
the navigation methods become as important as the
layouts as the amount of data increases. Developing
effective navigation methods for pre-designed layouts is
more difficult than developing an effective layout.
Moreover, although some systems include different
layouts, these layouts are still designed based on the
system designers’ intention.

On the other hand, the user could use simple
rectangular and linear layouts to treat sets of data. While
such layouts can be used for many types of data, they are
too simple to control the scale and position of each piece
of information or to reflect all user requirements.
Consequently, although such systems are easy to use,
some limitations exist. For example, the user cannot
control information parameters such as size and position
depending on the user’s situation and focus, and cannot
add relationships between information. As a result, there
is no layout system that both supports casual use and
reflects the user’s full range of needs.

http://www.eg.org
http://diglib.eg.org

2 Hiroaki Tobita / VelvetPath

© The Eurographics Association 2003.

Figure 1: Example of using the VelvetPath system.
Visualized data is automatically displayed according to
the user’s drawings.

Figure 2: VelvetPath system overview. The system
has a work area and simple GUIs. Three types of pen
attribute are available for drawing different types of
stroke.

Therefore, we developed the VelvetPath system not
with the aim of providing a pre-made layout that is
capable of meeting the needs of every user, but with the
aim of allowing users to design and create their own
information layouts naturally. Based on sketch and paint
interface techniques, the system supports both simple
rectangular and linear layouts and complex layouts in
2D and 3D spaces. Visualized information like image or
document data automatically appears along the strokes
drawn by the user. The user can also create 3D layouts
by adding a shadow stroke in a 2D layout, as the shadow
stroke is automatically defined as indicating depth in a
3D layout. Also, by adjusting the pen width and paint
area, he or she can control the information size and
relation rate between information. In this way, the user
can control the focus area of a layout and then see
information in detail by using the large size display.

Although the system allows the user to freely create
and design layouts, the design process may still be
difficult. However, because the user can create layouts
according to his/her needs by applying sketch and paint
techniques without having to engage in parameter-
setting through complex graphic user interfaces (GUIs),

most design difficulties can be avoided. Even a simple
stroke can become a kind of layout. Because the user
can also create a new layout by adding a stroke to a
previous layout or one of the templates included in the
system, the user can redesign and improve the layout
according to his/her needs.

In addition, these design interactions are created
through simple interactions and pen attributes, so these
manipulations can be combined with traditional design
systems and other tools. For example, in the case of 2D
and 3D creations, a user can define many data and select
image data for texture mapping by simply drawing a
stroke and painting. The system has great potential for
collaboration with other computers and software, so we
intend it to be effective not only for information retrieval,
but also for a wide variety of applications such as
creation, presentation, and communication applications.

In this paper, we describe the VelvetPath system and
how it enables users to handle information efficiently.

2. Sketch and paint interactions
A primary characteristic of the VelvetPath system is

that it allows users to apply both sketch and paint
manipulations to the design layout. Since the system
uses the pen width and paint area to positively control
the information parameters, we will describe their roles
before describing the user interface.

2.1. Pen width
While only the pen trace is processed to obtain the

information used to create a model or scene in
traditional sketch systems [13,14,15,16], our system also
uses the stroke width to control information parameters
such as the visualized information size and relation rate.
The user can therefore directly control these parameters
by adjusting the pen width.

2.2. Paint area
The paint area is also related to information

parameters such as size and position. Since a screen
image is calculated through image recognition, the
system recognizes the area as one big point with the
width and height of the painted area. Thus, the user can
also control the information size and position by how the
paint area draws.

3. User interface
The VelvetPath system provides an information

environment that enables the user to create original
layouts to meet his/her needs and to browse the many
types of data included in the original data set. Figure 2
shows the user interface of the VelvetPath system. The
buttons at the bottom of the figure allow the user to
choose pen attributes and draw three types of stroke
(normal, shadow, and relation).

 Hiroaki Tobita / VelvetPath 3

© The Eurographics Association 2003.

Figure 3: Normal Stroke. The user can control the
information size by selecting the appropriate pen width
(top) and adjusting the paint area (bottom). The preview
rectangle shows how the information size is displayed
within a painted area (bottom).

Figure 4: Click and drag manipulations. The user
can change the visualized information size by moving
information onto a painted area (top) and exchanging
the positions (bottom).

The first and second buttons activate the normal and
shadow pens, respectively, which are used to create a
layout. The user can create a 2D layout by drawing a
normal stroke and a 3D layout by adding a shadow
stroke to the 2D layout. The third button is for the
relation pen, which allows the user to add relationships
between different pieces of information. The stroke
color depends on the button color, so the user can use
stroke colors like paint colors. Moreover, the user can
control the pen width by clicking on the pen GUI area
such that the pen width and GUI become thinner if the
user clicks the left button, and the pen width and GUI
become bolder if the user clicks the right button in either
of the pen GUIs.

3.1. Normal stroke
The user can create a 2D layout by using the normal

pen (displayed as a green stroke). Since the information
nodes and images are automatically displayed along the

user’s strokes (Fig. 1), the user can create a layout
somewhere in 2D or 3D space and draw strokes on pre-
defined objects. In addition, as the pen width is directly
related to the image size, larger images appear if the user
draws a bold stroke, while smaller images appear if the
user draws a thin stroke (Fig. 3 (top)). A painted area is
recognized as one big point, and the size of information
to be displayed on the painted area can be adjusted with
a preview rectangle (Fig. 3 (bottom)). The pen width can
therefore perfectly reflect the information size.

The user can control the information size by clicking
the information and dragging it onto a painted area (Fig.
4 (top)). The user can also change the data position by
clicking data and dragging it to the desired position (Fig.
4 (bottom)), and add a relation between separate groups
of information by drawing relation strokes. These
manipulations are contained within a simple text file, so
the user can customize both the layout and order. First,
as the system loads files from a folder, the order of the
visualized information depends on default file
information such as the name and time information of
the files.

Figure 5: Shadow stroke. The user can create a 3D
layout by drawing a normal stroke (green) and adding a
shadow stroke (yellow) (top). It is also possible to create
a layout by using only shadow strokes (bottom).

3.2. Shadow stroke
By adding a shadow stroke (displayed as a yellow

stroke) with the shadow pen, the user can create 3D
layouts. Basically, the 3D layout is created by
combining normal and shadow strokes. If the user draws
a shadow stroke under a normal stroke, the system
translates the shadow into a depth parameter. Figure 5
(top) shows the creation of a time-oriented layout [9] by
using the depth parameter as a time parameter. By
simply drawing shadow strokes, the user can cause an
information node to appear along the strokes on the
background (Fig. 5 (bottom)).

4 Hiroaki Tobita / VelvetPath

© The Eurographics Association 2003.

Figure 6: Relation Stroke. The user can create a lay-
ered layout by drawing relation strokes (left). Multiple
nodes can be connected to one node at the same time
(right).

Figure 7: Work area. The work area is divided into
two areas: screen and ground (left). The shadow stroke
is projected onto the ground area automatically (right).

3.3. Relation stroke
The user can add relationships to connect focused

nodes by drawing a relation stroke from one node to
another. In the same way as in a layout creation, the pen
width directly corresponds to a relationship value, so a
user can make and control relationships between nodes
(Fig. 6 (top)). In addition, by drawing a closed curve,
multiple nodes can be connected to one node at the same
time (Fig. 6 (bottom)). This manipulation is especially
useful for grouping new data, such as digital
photographs and user creations like painted images or
3D models.

4. Implementation
The work area consists of two drawing canvases:

screen and ground canvases (Fig. 7 (left)). Normal and
Relation strokes are drawn on the screen canvas.
Shadow strokes are drawn on the ground canvas. Since
the shadow stroke is projected onto the 3D scene from
2D strokes, the user can draw it as if creating a 2D
drawing (Fig. 7 (right)).

When the user draws normal strokes (Fig. 8 (1)), the
strokes are stored as both mouse trace data and labeling
data calculated by the system (Fig. 8 (2,3)). Through
template matching to the labeling data, the system
recognizes what shape was drawn (for example, a line, a
circle, a rectangle, or a triangle), so that a painted circle
can be recognized as one big point (Fig. 8 (4)). As the
system holds information regarding the painted area, it is
possible to perfectly reflect the features of the painted
area such as the shape and size. Next, the trace data is
recalculated so that the visual information will be
displayed consistently, i.e., at equal intervals along the
trace (Fig. 8 (5)).

Figure 8: Calculation of the drawing area. The
painted area is recognized as one point through labeling
and pattern matching of the screen image (3, 4). Next,
the system recalculates the mouse trace data depending
on the information size (5, 6).

Figure 9: Technical layout. The user can create 3D
layouts by continuously drawing normal and shadow
strokes (left), and he/she can add relationships between
information and create a layered layout by drawing a
relation stroke (right).

To create 3D layouts, the user first draws a 2D
stroke, and then draws a shadow stroke. The start and
end points of the 2D layout (based on the normal stroke)
are connected with the start and end points of the
shadow stroke. The 2D stroke then deforms the 3D
curve relative to the length of the depth stroke (Fig. 9
(left)). In the case of drawing only shadow strokes, the
system calculates in the same way as for normal strokes
(Fig. 8). After setting up the layout, the user can shift
images from the starting point to the end point of the
recalculated data. As the amount of expressed data
depends on the stroke length, less data is visualized if
the total length of the data is longer than the stroke.
These calculations are done when the user finishes
drawing a stroke.

In the case of connecting with a relation stroke, the
system recognizes the starting point node as a parent
node, and the connected node as a child node of the
scene graph. Thus, the parameters of the child node
change along with those of the parent node. By taking
the stroke width into account, the system defines the size
and position parameters of the child node. Figure 9
(right) shows an example of connecting an image to a
predefined layout. The child nodes that are included in
the layout become half the size of the parent, because
they are connected with a double-sized pen. Similar
sketch-based link techniques already exist [11] and are
effective for directly creating relationships between
information. However, our system differs in that the pen
width can be used to directly control the related value.

 Hiroaki Tobita / VelvetPath 5

© The Eurographics Association 2003.

Figure 10: Layout examples from the VelvetPath
System. The figure shows examples of layout creation
(top) and how they were created (bottom).

Figure 11: Creating a graph layout. The user can
create a spring model [10] by drawing relation strokes
between information (3, 4). Related nodes are moved if a
user clicks and drags a node (5, 6).

5. Layout design example
Figure 10 shows examples of the VelvetPath system

being used to create layouts similar to those of
conventional information visualization systems (top) and
how the example layouts were created (bottom). The
user can create layouts by continuously drawing simple
strokes and using pen attribute combinations. In Fig. 10
(1), images are placed on the background in a Data
Mountain system [2] by drawing shadow strokes. Figure
10 (2) shows a text layout that depends on the pen width.
Fig. 10 (3) shows a layered layout like ConeTree [6]
created by using the relationships between strokes.

Figure 11 shows how a spring model can be created.
In this case, the pen width of a relation stroke is not
related to the information size, but to the force (e.g.,
attraction or repulsion) between nodes. If a user
connects a node to another node with a relation stroke,
the system contains a click node and a connected node
as shown in Fig. 6. The system then calculates the
attraction or repulsion, and displays a line between the
nodes (Fig. 11 (3, 4)). These nodes are calculated
according to the frame rate, so related nodes are moved
if a user clicks and drags another node (Fig. 11 (5, 6)).

Figure 12: Example of texture mapping. A stroke
enclosing the model is drawn to define a texture, and the
model is painted to map the texture (3, 4). The texture
will be moved if it is on the stroke, but mapped to the
model if it is on the model (5, 6).

Figure 13: Example of scene creation. A user can
shift models and use strokes to set 3D models.

6. VelvetPath applications

VelvetPath system has a variety of applications, such
as to content creation and presentation.

6.1. Creation
The user can apply the system to 2D illustration, 3D

modeling, or scene creation. As the painted area is
recognized as one big point, the user can map texture
data or set objects within the area.

6.1.1. Texture mapping
Figure 12 shows texture mapping to a 3D model

with the VelvetPath System (Fig. 12 (1, 2)). When a
stroke enclosing the model is drawn to define a texture
and the model is painted to map the texture (Fig. 12 (3,
4)), the texture will be set and moved on the stroke and
the painted area, so the user can quickly retrieve a
desired texture for the model (Fig. 12 (5, 6)). In
conventional systems, the user has to use file dialogs to
import image data. However, users of our system can set
data by simply drawing a stroke and painting on objects.
In the same way, the user can test vertex and pixel
shaders.

6.1.2. Scene layout
Likewise, a user can apply the system to 3D scene

creation (Fig. 13). In this case, the user draws a stroke
and a large point to define scene elements such as 3D
models on the stroke. The user can then select and
define elements by shifting the models.

6 Hiroaki Tobita / VelvetPath

© The Eurographics Association 2003.

Figure 14: Presentation with the VelvetPath system.
The user can produce presentations with original lay-
outs.

In the case of content creation, as the user can set a
layout in the same workspace as for the main creative
activities, the user can rapidly test textures and models
by using simple manipulations. We expect these creation
methods to be particularly useful for novice content
creators and children.

6.2. Presentation
A user can create a layout for a presentation by

drawing strokes, and thus can define and show
presentation contents by applying different layouts (Fig.
14). The layouts can be designed to show all slides with
scaling, with the biggest slide corresponding to the
current part of the presentation sequence. In a
presentation, it is important that the audience understand
the relationships between previous and current slides.
With such layouts, the audiences can easily understand
these relationships. Also, these techniques are available
for use during question and answer sessions, as well as
during the main presentation. For example, if the
audience wishes to see two particular slides, the
presenter can quickly and easily paint the two areas.

 In small meetings as well, the VelvetPath system
provides good support for displaying data. Here, the user
can choose and create the most effective layout
according to the situation and data type.

7. User experience
Here, we discuss the experiences of test users who

used the VelvetPath system for information retrieval,
and compare the use of various layouts.

7.1. Tasks
The users were asked to retrieve information (in a

group of random images and similar images), and map
images to a 3D model by using an original layout and a
pre-defined layout. We also asked the users to rate the
techniques on a scale from 1 to 5 (1 = very bad, 2 = bad,
3 = OK, 4 = good, and 5 = excellent) and to explain their
choices.

Figure 15: Results of user testing. The results for
tasks 1, 2, and 3 are shown in (1), (2), and (3), respec-
tively. User reactions are shown in (4).

Figure 16: Examples of layouts drawn by the users
in the test.

7.2. Subject
Six users, who were using the VelvetPath system for

the first time, performed the tasks. They varied in terms
of their proficiency in using computers, and none had
special design skills. Before the experiments, the users
were trained for five minutes on how to use VelvetPath
features such as how to control the information’s
position and size. In all tests, the users first created
original layouts and then redesigned them.

7.3. Results
Figure 15 shows the results of the user tests. The

results for tasks 1 and 2 are shown in Fig. 15 (1, 2). In
these cases, users retrieved information in a folder
supported by the OS and the VelvetPath layout. In Fig.
15 (3), the users used the VelvetPath layout for their
creative activities. In this case, the users mapped ten
textures onto the same position by using Photoshop [17],
Maya [12], or VelvetPath. The user reactions are shown
in Fig. 15 (4). Figure 16 shows the the layout designs
drawn by the.

8. Discussion
Here, we discuss the interactions and applications of

the VelvetPath system based on the user experiences
during the test and comments by visitors to our
demonstrations and consider related work.

 Hiroaki Tobita / VelvetPath 7

© The Eurographics Association 2003.

8.1. Interactions
Users quickly understood our system concepts and

interaction methods. There was no difference between
our system and the comparison system in task 1, but the
users of our system could retrieve information more
quickly than with the comparison layout used in task 2.
Our system was more effective in task 2 because the
users controlled the scale parameter by using the paint
area and pen width, and this allowed them to see
information in detail so that they could quickly retrieve
it. Since our system seems to be superior when handling
similar data sets, we think it will be effective for
processing the work history in programming, mail, and
creation tasks. In task 3, all users could retrieve desired
images more quickly. Users of our system could test
mapping data by simply drawing and painting without
using the file dialog, so the manipulations were faster
than in the other methods. Together, the results from
tasks 2 and 3 suggest that our interactions are an
effective means for information retrieval that requires
detailed information and creativity. The users reacted
favorably to our system throughout the testing (Fig. 15
(4)).

In the layout design, most users designed original
layouts before the information retrieval. (Examples of
the layouts are shown in Fig. 16.) Although none of the
users created a complex layout, they could easily create
simple layouts, and drew words and pictures as well as a
strokes before setting the information. Our system is
designed to enable a user to design simple layouts and
freely redesign them. The users in the test could casually
create simple or strange layouts, without needing special
design skills, and design difficulties did not arise. We
expect that users will be able to create more original,
increasingly effective layouts by continuously
redesigning existing layouts according to their needs.

Moreover, we showed through simple
demonstrations that both the sketch and paint
interactions could be used to directly control parameters
(e.g., scale and relation). Users reacted especially
favorably to the relation stroke, because this stroke made
it possible to handle the user’s original data set while
controlling the relation rate by adjusting the pen width.
Generally, the users held their original data set in a
folder named related data, and each user could establish
relationships between information and create simple
databases by using only relation strokes. On the other
hand, some users had questions related to the system’s
lack of effectiveness in making complex manipulations.
Also, a few visitors would have preferred more complex
layouts and relationships. However, our goal was to
enable simple and convenient interactions that would
allow casual users to freely apply the system. Complex
manipulations and GUIs would increase the complexity
of the layout and relations, and so, the system does not
support them.

8.2. Application
Many visitors to the system demonstrations could

imagine a wide variety of applications for the system
and commented on the uniqueness of the potential
applications. Some people suggested that the system
would be useful for movie making, because the user can
draw strokes to directly indicate the time axis. In movie
creation, each frame’s data is connected to time
information, so the user can see and smoothly exchange
movie contents. Also, it is possible to treat data from a
group of frames through a drawn path.

8.3. Related Work
There are many sketch-based interfaces that allow

users to perform 2D manipulations of 3D creations.
Characteristically, all the manipulations in these systems
are simple and similar to drawing a stroke on a piece of
paper with a pen. Sketch [17] users can draw 3D curves
by performing 2D manipulations. This system calculates
a 3D curve by combining a 2D stroke and a shadow
stroke. Users of Harold [18] and Tolba [19] can create
flat models in a 3D space with sketch-based
manipulations, effectively creating a 2.5D scene in a 3D
space. Teddy [16] is another 3D modeling system with
2D manipulations. In Teddy, the user interactively draws
freeform 2D strokes to specify the silhouette of an object,
and the system automatically constructs a 3D polygonal
surface model based on these strokes. PaintEffect [15] is
another sketch-based system, used not to create 3D
scenes and models, but to add accents (e.g., grass,
flowers, trees, fire, etc.) to existing 3D scenes. In this
system, while information is set along the user’s strokes,
the system cannot recognize a painted area as one area
and cannot recognize variation in the pen width. Thus,
users have to control information attributes by setting
information parameters through a complex GUI.

9. Conclusion and future work
The VelvetPath system is an information retrieval

system that integrates the simple manipulations of
sketch interfaces with information visualization systems.
We have described the prototype VelvetPath system and
its features, such as basic and particle layouts and
interaction support. Several examples were shown to
demonstrate how the system can be used for a wide
variety of applications.

We will consider other types of effective animation
methods by using simple techniques like sketch-based
manipulations, because the combination of layout and
animation is important to support more natural
information retrieval.

10. Acknowledgement
We thank the members of our Sony CSL Interaction

Laboratory for their encouragement and helpful
discussions and comments.

8 Hiroaki Tobita / VelvetPath

© The Eurographics Association 2003.

References
 1. S. K. Card, J. D. MacKinlay, and B. Shneiderman.

Readings in Information Visualization: Using Vi-
sion to Think. Morgan Kaufmann, 1999.

 2. G. Robertson, M. Czerwinski, K. Larson, D. Rob-
bins, D. Thiel, and M. van Dantzich. Data Moun-
tain: Using spatial memory for document man-
agement. In Proceedings of UIST '98, pp. 153-162.
1998.

 3. H. Koike. Fractal views: a fractal-based method
for controlling information display. ACM
Transactions on Information Systems (TOIS), Vol.
13, No. 3, pp. 305-323, July 1995.

 4. G. W. Furnas. Generalized fisheye views. Pro-
ceedings of the ACM Tran. on Computer-Human
Interaction, Vol. 1, No. 2, pp. 126-160, 1994.

 5. B. B. Bederson, J. D. Hollan, K. Perlin, J. Meyer,
D. Bacon, and G. Furnas. Pad++: A Zoomable
Graphical Sketchpad for Exploring Alternate In-
terface Physics. Journal of Visual Languages and
Computing, Vol. 7, No. 1, pp. 3-31, 1996.

 6. G. G. Robertson, J. D. Mackinlay and S. K. Card.
Cone Trees: Animated 3D Visualization of hierar-
chical information. Proceedings of the ACM
Conference on Human Factors in Computing
Systems (CHI ’91), pp. 189-194, 1991.

 7. H. Koike and T. Takada. VisuaLinda: A Frame-
work for Visualizing Parallel Linda Programs.
Proceedings of 1997 IEEE Symposium on Visual
Languages (VL'97), pp. 174-180, 1997.

 8. T. Takada and H. Koike. Tudumi: Information
Visualization System for Monitoring and Auditing
Computer Logs. Proceedings of 6th International
Conference on Information Visualization, pp. 570-
576, 2002.

 9. J. Rekimoto. Time-Machine Computing: A Time-
centric Approach for the Information Environment.
In Proceedings of UIST’ 99, pp. 45-54, 1999.

 10. R. Davidson and D. Harel. Drawing Graphics
Nicely Using Simulated Annealing. ACM Trans-
actions on Graphics, Vol. 15, No. 4, pp. 301-331,
1996.

 11. J. Lin, M. Thomsen, and J. A. Landay. A Visual
Language for Sketching Large and Complex In-
teractive Designs. In Proceedings of CHI2002, pp.
307-314, 2002.

 12. Maya and PaintEffect.
http://www.aliaswavefront.com/

 13. T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy:
A sketching interface for 3D freeform design. In
SIGGRAPH ’99 Proceedings, pp. 409-416, 1999.

 14. R. C. Zeleznik, K. P. Herndon, and J. F. Hughes.
An Interface for Sketching 3D Curves. In
SIGGRAPH ’96 Proceedings, pp. 163-170, 1996.

 15. J. M. Cohen, J. F. Hughes, and R. C. Zeleznik.
Harold: A World Made of Drawings. In
NPAR2000 (Symposium on Non-Photorealistic
Animation and Rendering), pp. 83-90, 2000.

 16. O. Tolba, J. Doresey, and L. McMillan. Sketching
with Projective 2D Strokes. In Proceedings of
UIST ’99, pp. 149-157, 1999.

 17. Photoshop.
http://www.adobe.com/

