
EUROGRAPHICS 2003 / M. Chover, H. Hagen and D. Tost Short Presentations

High quality images from 2.5D video

R-P. Berretty and F. Ernst

Philips Research, Eindhoven, The Netherlands

Abstract
Given a 2D video stream with an accompanying depth channel, we render high quality images from viewpoints
close to the original one. This is for instance required to generate a 3D impression on stereoscopic or multiview
screens. We propose a technique for video based rendering that supports higher order video filtering. We focus on
screens that support horizontal parallax.
We can optionally incorporate rendering of a so called hidden layer that contains data of parts of the scene that
are hidden from the original viewpoint. We are able to render high quality images at only the added cost of the
video filtering.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Display algorithms

1. Introduction

Stereovision is one of the strongest cues for a human to per-
cieve the 3D nature of the world. The left eye receives a dif-
ferent image from the right eye, because foreground objects
are in a different position relative to background objects for
distinct viewing positions. The relative position of the same
object in the two projected images is called the disparity.
In order to minimize eyestrain, a stereo-pair of images must
only have horizontal, and no vertical disparity.

A video format that is suited for rendering from differ-
ent viewpoints is 2D video format enriched with a depth
channel, i.e., for each point in the scene, we know the dis-
tance of the point to the camera. We call the resulting stream
2.5D video. This format is currently advocated to transmit
3D video 14.

A 2.5D video stream can be obtained by a camera that
also records depth information, or by depth estimation from
a 2D recorded video sequence4, 7, 12, 15.

From 2.5D video, we want to render video streams that
appear to be seen from another position close to the original
camera. We focus on new views for screens that support hor-
izontal parallax. The challenge is to efficiently render these
views without introduction of unnecessary artefacts.

1.1. Previous Work

One way to solve the problem is to model the 2.5D image
as a fine (pixel size) wire frame with the image as a tex-
ture, and subsequently rendering the image with a standard
PC graphics pipeline. This solution, however, has two draw-
backs. Firstly, there is a lot of overhead involved in the set-up
of the triangles in the pipeline. Secondly, this approach suf-
fers from the poor quality of the filters that are present in
such pipelines. This is because PC graphics cards are opti-
mized for performance and not for image quality. We found
that standard computer graphics approaches introduce an-
noying aliasing artefacts in the resulting output video stream.

In the literature, there are solutions that partially address
our problem. Contributions come from the area of image
based rendering. The paper of Oliveira et al.11 deals with
photo realistic rendering based on images that have depth
information; Popescu et al. 13 propose a hardware architec-
ture to render from images with depth maps. However, these
techniques do not, or only marginally support the integration
of high order video filters.

An approach that does offer high quality pre-filtering is
forward texture mapping, or texel splatting 10, 17. We shall ex-
plain this approach in Section 3. The drawback of splatting,
however, is the way occlusions are solved. The standard so-
lution in forward texture mapping architectures needs a frag-
ment buffer that stores contributions for each output pixel,
together with the depth information. The buffer accumulates

c© The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org


Berretty and Ernst / 3D Video Rendering

the contributions of the entire scene, and sorts them from
front to back. After processing the whole scene, the buffer
can be used to render the scene front to back.

1.2. Our Approach

In this paper, we describe how to integrate higher order video
filters into the rendering stage for 2.5D video. These filters
can be chosen to alleviate the aforementioned aliasing arte-
facts.

We will use texel splatting, but avoid the use of a frag-
ment buffer, thereby enabling usage of higher order video
filters at low cost. In our special case we only have to address
horizontal camera translations (the transformation that sup-
ports the horizontal parallax for multiview displays). From
the camera transformation under consideration, it follows
that the deformation of the input image is constrained to be
horizontal. This allows us to process in scanline order.

At depth discontinuities, the use of data which is not avail-
able in the original image may be advantageous. While most
current processing techniques use slight distortions in an at-
tempt to reconstruct information at depth discontinuities, we
have adopted a representation that provides extra data, to-
gether with an efficient way to store this data. Hence, to re-
duce blur or other distortion artefacts, we use an extension
to the 2.5D video stream that can be used in the rendering
stage of the display. This extension consists of what is called
a hidden layer. In this paper, we also show how to splat the
hidden layer to the output video screen. Our rendering rou-
tine, however, does not depend on the availability of a hidden
layer and has fallback options that will never leave holes in
the resulting images.

The remainder of this document is organized as follows.
In Section 2 we describe the 2.5D video format and discuss
the difficulties that have to be dealt with in the rendering
stage. In Section 3 we show how to integrate video filtering
into the rendering stage. In Section 4 we elaborate on the
hidden layer extension of the 2.5D stream that can be used
to eliminate blur artefacts. In Section 6 we summarize and
draw some conclusions. In Appendix 5, we give example
output frames.

2. Preliminaries

The depth information within the 2.5D video stream allows
us to model the original image as a set of samples of an im-
age projected onto a terrain. In Figure 1(a) we show a cross
section of the sampled terrain. The lengths of the arrows in-
dicate the depth values of the samples.

The 2.5D video format represents a subset of the full 3D
model of the world. Rendering from other viewpoints can be
accomplished by projecting the terrain onto the image plane
from the desired viewpoint. In Figure 1(b) we show that after
viewpoint transformation, the density of the projected input

Occluded
Minification Magnification

(a) (b)camera viewpoint

image plane

terrain

Figure 1: (a) Reconstruction of a cross section of the sam-
pled terrain representing image plus depth (b) Original im-
age samples remapped for a different view point.

texels is not uniform in the output domain. Hence, a resam-
pling procedure is required. In general, a resampling proce-
dure can be seen as a four step procedure 6.

1. Reconstruct a continuous signal from the sampled data.
2. Deform the continuous signal as desired.
3. Band limit the deformed signal.
4. Sample the band limited signal.

The first and third step are filtering steps. The first step
is carried out by a reconstruction filter, the third step is car-
ried out by a pre-filter. From Figure 1(b) we can see that
the view point transformation imposes special requirements
onto Step 2 (the deformation step) that are not present in a
conventional resampler for 2D video: viewpoint transforma-
tion can induce occlusions of parts of the original image.

Besides the induced occlusions, there are also areas of
possible magnification of the input signal, as well as areas
of possible minification. These minifications, magnifications
and occlusions follow from the fact that objects in the image
have different distances to the camera. Therefore, we can try
to interpret what gives rise to each of these cases. Let us
consider the example depicted in Figure 2: a tree in front of
a house. We have a base image and a per-pixel depth chan-
nel. To render an image from a new point, image information
can be taken from the base image. Actually, there are parts
of the new image to which both the foreground (tree), and
the background (house) are mapped. Clearly, the rendering
stage has to deal with the introduced occlusion. Moreover,
there is a part of the house in the new viewpoint that was
not recorded by the original camera. In other words, when
we consider 2.5D video, we lack information about that part
of the house in the image, and we have to fall back to ad-
vanced reconstruction (magnification) filters that (try to) re-
construct the signal in the deoccluded area. An other option
is to transmit extra information about the background, and
insert the reconstructed extra information at the position of
the deocclusions. This so called hidden layer extension will
be treated in Section 4.

In the following section, we show how to render from a

c© The Eurographics Association 2003.



Berretty and Ernst / 3D Video Rendering

scanline

depth channel of the scanline

original viewpoint transformed viewpoint

deocclusion

occlusion

Figure 2: Rendering from image+depth: occlusions and de-
occlusions.

transformed viewpoint using only the 2.5D input channels.
We also show how to find occlusions efficiently.

3. Rendering 2.5D video

In this section, we show how to properly render a 2.5D video
stream. We treat the problem in the context of the resam-
pling framework. Let us first set out the resampling frame-
work more formally. We formalize the four step resampling
procedure for a one dimensionally signal.

We adopt the notation from Heckbert 6. Let f (u) (u ∈ N )
denote the input signal, m(u) denote a mapping function that
maps input coordinates u onto output coordinates x, r(u) de-
note a reconstruction filter and h(x) (x ∈ R ) denote a pre-
filter. Then, the general resampling framework can be for-
mulated as follows.

1. The reconstructed signal from f (u) is

fc(u) = f (u)⊗ r(u) = ∑
k∈N

f (k)r(u−k)

where ⊗ denotes convolution.
2. The deformed input signal is

gc(x) = fc(m−1(x))

3. The band limited deformed input signal is

g′c(x) = gc(x)⊗h(x) =
∫
R

gc(t)h(x− t)dt

4. The discrete output signal is

g(x) = g′c(x)i(x)

where i is an impulse train.

Our implementation of the resampling procedure, which
will be detailed in Section 3.2, is a splatting approach 10, 17,

in which an explicit expression for g′c(x) is derived by ex-
panding the above steps in reverse order:

g′c(x) =
∫
R

h(x− t) ∑
k∈N

f (k)r(m−1(t)−k)dt

= ∑
k∈N

f (k)ρk(x)

where

ρk(x) =
∫
R

h(x− t)r(m−1(t)−k)dt

The warped and filtered basis function ρk(x) is defined as
a screen space integral, and is constructed by first warp and
filter the reconstruction filter footprint to construct the re-
sampling kernels ρk and then sum up the contributions of
these kernels in screen space. This is called splatting.

From the definition of ρk(x), it follows that m needs to be
invertible. Clearly, the self-occlusions of the input induced
by horizontal camera translation cause the view point trans-
formation to dissatisfy this constraint.

In the introduction, we mentioned that a common solution
to deal with occlusions is to collect contributions for each
output-pixel in a so called fragment buffer. Such a fragment
buffer, however, leads to an inefficient algorithm in terms
of bandwidth and memory. Therefore, we shall show that
in the case of the view point transformation, we can find a
mapping m that is invertible, i.e., in the following subsection
we show how occlusions can be found during the processing
of a scanline.

3.1. Occlusion Handling

From literature, we find that it is possible to traverse the in-
put image in such a way that occluding parts are visited be-
fore occluded parts. Anderson 1 reports how to find a front to
back order for rendering a landscape from an arbitrary view-
point. He starts at the epi-pole of the transformation; the epi-
pole is the image in the desired view of the optical center of
the original camera. The front to back order is accomplished
by starting at the epi-pole of the camera-transformation and
by moving away from the epi-pole. Anderson maintains a
representation of the 2D perimeter of the rendered area in or-
der to decide whether during his traversal of the landscape,
newly discovered parts should be rendered.

McMillan 9 introduces the result of Anderson in the com-
puter graphics community. By reversing the order of render-
ing from back to front, he does no longer need to maintain
the rendering perimeter, but sacrifices possible integration
with higher order video filtering.

As put forward in the introduction, the desired transfor-
mation for our 3D display only encompasses horizontal dis-
parity. Next, we shall see how, given the aforementioned
property, the perimeter of Anderson can be composed of a
single value per scanline. Subsequently, we will show how

c© The Eurographics Association 2003.



Berretty and Ernst / 3D Video Rendering

b

a

v0 v1

c

x→ pv0 (b)pv1 (b)pv1 (a) pv0 (a)

Figure 3: Illustration of Lemma 1.

we can efficiently integrate the transformation with hardware
video filters.

In the following few paragraphs, let us consider a single
scanline of the input image, i.e., the ‘1.5D’ problem of pro-
jecting a one dimensional piecewise linear terrain onto an
image line from various viewpoints. We shall show that oc-
clusions can be determined on the fly during a traversal of
this scanline.

We denote the projection of an input sample point a for
viewpoint v onto the image line by pv(a). We identify the
original camera viewpoint with v0. The following lemma
gives us a relation between scanline order and occlusions
for other viewpoints. Figure 3 illustrates the lemma.

Lemma 1 Let a, b be subsequent samples on an input scan-
line of a depth terrain for original camera position v0, such
that pv0 (a)< pv0 (b). Let v1 > v0 be the desired camera view-
point. Let c be a sample point from the original image that
is occluded by line segment (a,b) from viewpoint v1. Then
pv0 (c)< pv0 (a).

Proof: In order for line segment (a,b) to be visible from
viewpoint v1, v1 needs to be on the same side of the line
the line supported by (a,b) as v0. Consequently, pv1 (a) <
pv1 (b). From the occlusion of c, it follows that pv1 (a) <
pv1 (c)< pv1 (b).

By construction, c is visible from viewpoint v0, so either
pv0 (c)< pv0 (a), or pv0 (c)> pv0 (b). Since v1 > v0, pv1 (b)<
pv0 (b), which implies that pv0 (c) > pv0 (b) cannot hold. We
conclude that pv0 (c)< pv0 (a). 2

From Lemma 1 it follows that for a desired viewpoint
v1 > v0, a traversal of the input scanline with decreasing
x-coordinate, will let us encounter occluding parts of the ter-
rain before occluded parts. Therefore, we can solve occlu-
sions as follows (see Figure 4): First, we introduce a vari-
able extent that maintains the x-extent of the projected texels
in the output domain. Then, we can conclude that if a texel
that is processed does not lengthen the extent, it must be oc-
cluded by the previously processed texels. For a viewpoint
transformations v1 < v0, the argument is analogous: in that
case we traverse the scanline with increasing x-coordinate.

b

a

v0 v1

c

← extent

Figure 4: Detecting occlusions by maintaining the x-extent
in the output domain. The camera translation imposes a
right to left traversal. Sample c is occluded, since it does
not lengthen the extent.

Now that we can detect occlusions, the road is open for
a texel splatting procedure. In Section 3.2 we discuss the
implementation of this procedure.

3.2. Filter Implementation

Now that we know how to detect occlusions in the output
view. We shall show how to implement the solution in the
resampling framework that was given in the beginning of
this section.

Let us discretize the general resample procedure. A com-
mon 1D discretization of the resampling process is to use a
zero-order reconstruction filter (Dirac function).

A drawback of the Dirac reconstruction filter is the suffer-
ing from an artefact called DC-ripple, or frequency ripple.
DC ripple is visible as intensity fluctuations on the output
signal for constant intensity input signal5, 8. Since we deal
with small, varying minification and magnification, our ap-
plication is especially susceptible to DC ripple, so we prefer
not to use Dirac reconstruction.

DC ripple can be avoided by using a first order (box) re-
construction filter as shown by Meinds and Barenbrug 10.
Their resampling algorithm, that uses box reconstruction, is
developed below. Let box be the piecewise constant box fil-
ter:

box(x) = 1 :−1
2
< x <

1
2

box(x) = 0 : otherwise

Then,

ρk(x) =
∫
R

h(x− t)box(m−1(t)−k)dt.

Substituting t = m(u):

ρk(x) =
∫
R

h(x−m(u))box(u−k)du

c© The Eurographics Association 2003.



Berretty and Ernst / 3D Video Rendering

Figure 5: Three scanlines of the box reconstructed signal
projected onto the output domain. The solid lines are the
output pixels. The dots are the projected texel coordinates.
The dashed lines are the midpoints of the projected texels.

We simplify again, box(u−k) = 1 for u ∈ [k− 1
2 ,k+ 1

2 ], so

ρk(x) =
∫ k+ 1

2

k− 1
2

h(x−m(u))du

= H(x−m(k +
1
2

))−H(x−m(k− 1
2

))

where H is the definite integral of h.

In our implemention, we compute the size of the boxes in
the output domain. We take the midpoints of two successive
warped input samples as the warped midpoint of interme-
diate values. Still, the density is dependent on the density of
the projected texels onto the image line. In the current imple-
mentation, we have chosen to simply drop input texels that
appear to be occluded during the terrain traversal; it is pos-
sible, however, to refine the reconstruction and to use, e.g.,
a contribution proportional to the non-occluded part of the
first order reconstructed input sample of the image. Figure 5
shows the result after box reconstruction and occlusion han-
dling. The size of the boxes is a measure for the contribution
of the original input sample.

For the implementation of pre-filter, we use a splatting ap-
proach, which is input driven. We have implemented various
pre-filter FIR (finite input response) functions with a varying
number of taps. For each input sample, we have to implic-
itly compute ρk(x). Because we use a FIR filter, ρk(x) is
defined only for a finite number of output samples. We de-
fine the range of output samples that receive contributions as
[fk(x), lk(x)].

From the discussion in Section 3.1 it follows that m(u)
is monotonous. Hence, fk(x), and lk(x) are monotonous as
well. Hence, the contributions of input samples can be accu-
mulated using a sliding window of output samples that tra-
verses the output scanline as we traverse the input scanline.
This method is known as a transposed mode FIR filter, and
can easily be implemented in hardware.

We have implemented the above filter structure in soft-
ware. We have started to only splat to pixels onto a single
scanline. This eliminates aliasing at the boundary of fore-
ground objects, and does not introduce artefacts in the inte-
riors of object. Note that we could also perform vertical fil-
tering to improve picture quality even more by eliminating
vertical aliasing which may be caused by shear 16. Our exper-
iments indicate that plain vertical splatting gives satisfactory
results. Figure 6 shows the output pixels that receive a contri-
bution from one input texel for a pre-filter footprint that also

texel

Figure 6: The pixels in the shaded area of the output domain
receive a contribution from the depicted input texel that is
projected onto the output domain.

has vertical extent. The latter approach can also be imple-
mented in hardware, but requires a number of line memories
equal to the height of the pre-filter footprint.

Note that the implementation of the filter structure allows
us to detect areas of magnification in the image. This is
when two consecutive midpoints of warped input samples
are more distant than one unit in the output grid. We can,
in this situation put more effort in the reconstruction. In the
next section we discuss how to insert samples from another
input stream at deocclusions. Our implementation has a fall-
back option of feeding ‘artificial samples’ that are recon-
structed using a bilinear interpolating filter to the higher or-
der pre-filter resampling structure. We could, however, also
fall back to higher order reconstruction filters.

In Appendix 5, we show example output of our renderer.
Figure 8 shows a video frame after viewpoint transformation
that was generated without the use of a higher order video
filter. Figure 9 shows a frame that was generated with a four-
tap horizontal FIR filter.

In the next section, we show how we incorporate the ren-
dering of the hidden layer into the framework.

4. Rendering layered video

In this section, we discuss the hidden layer that is used to
improve rendering of deoccluded areas in generated views.
In Section 4.1, we elaborate on the definition and give a short
note on our generation of the hidden layer. In Section 4.2
we discuss how the hidden layer can be incorporated in the
rendering framework of the paper.

4.1. Hidden layers

The idea of the hidden layer that we use was introduced by
Chang and Zakhor. They present the “Multivalued Represen-
tation” (MVR), which describes a scene in terms of multiple
levels, based on a certain reference frame 2. The base layer is
the visible part in the reference frame, and consists of 2.5D
video that we already discussed in the previous part of this
paper; (hidden) layer k consists of those pixels which are oc-
cluded k−1 times for the reference image. The reader must
note that the hidden layers are specified in the coordinate
frame of the base image. Therefore, the features of the hid-
den layer are hidden by foreground objects of the base layer.
Compared to a conventional layered approach, it is claimed
that with this approach, 3 levels are usually sufficient. The

c© The Eurographics Association 2003.



Berretty and Ernst / 3D Video Rendering

Base image Depth map

Hidden layer
image

Depth map of
hidden layer

Rendered
image

Figure 7: Rendering from image, depth and a hidden layer.
Darker colors are further away from the camera. At the de-
occlusion, the rendered image is filled with information from
an additional ‘hidden’ layer, consisting of those parts of the
scene which are visible in the rendered image but not in the
original image.

layers are constructed from independently computed three
dimensional models corresponding to the multiple views.

The concept of the hidden layer can be explained by
means of an example. In Figure 7, we zoom in on a potential
deocclusion. In the upper half of the figure, we see the base
image with the corresponding depth information, i.e. a 2.5D
video frame. Darker colors are further away from the cam-
era. In the bottom half of the figure, we see the hidden layer,
with the corresponding depth map. The information in the
hidden layer is not visible from the original view point, but
can be disclosed by changing the viewpoint as shown on the
right: the light part of the background is visible there. Note
that the hidden layer only contains data for parts of the im-
age that are occluded from the original viewpoint and visible
from the viewpoint of another recording.

The original implementation of Chang and Zakhor’s
MVR has several drawbacks. One of the drawbacks is re-
lated to the merge step of multiple frames. Generation of
depth is done for each image separately, which requires a
step of warping to the reference frame and clustering to han-
dle noise and outliers in the depth maps. The clustering step
is error prone.

We are able to generate a hidden layer in a manner that
is more consistent than the original paper of Chang and Za-
khor. In the following, we sketch our algorithm for the com-
putation of the hidden layer. The main focus of the paper is
on rendering, which is explained in Section 4.2.

We generate the hidden layer as part of the 2D-to-3D con-
version described by Ernst et al. 4. The basics steps in the
2D-to-3D conversion of video data are segmentation and
motion estimation.

First, we segment the base image, i.e., we group the pix-
els of the input image into regions that do not overlap object
boundaries. Next, we use another frame, the secondary im-
age, of the same scene that is recorded from a different view-
point, and for each segment, the motion vector that maps the
segment to the secondary image is estimated. The segment-
based motion estimation algorithm is based on the 3DRS
motion estimation algorithm 3, which is adapted for the use
of segments. An extensive description of segment-based mo-
tion estimation can be found in the paper of Ernst et al. 4 .

Now, the depths of the segments have to be found. First,
we motion-compensate the image and the motion field (or
depth map) to the camera position of the secondary image.
This amounts to shifting the segments over their computed
motion vector. Parts of the image will not have a predicted
segment assigned to them; those are the parts which are de-
occluded. These parts will reside in the hidden layer since
they are visible in the secondary image, but not in the origi-
nal one.

The main issue that remains is to determine where the de-
occluded pixels would have been located in the original im-
age. Since they are only visible in the secondary image, they
can not be matched, and no motion or depth information is
available. We know, however, that they must contain back-
ground data, otherwise they would not have been occluded
by other objects in the original image. We choose to assign
the depth of the neighboring background segment in the base
image.

As a final step, an inverse motion compensation of the de-
occluded pixels is carried out to the viewpoint of the original
image. All deoccluded pixels now get a position in the first
image, together with a depth or motion vector.

The final result is then a hidden layer, together with the
motion or depth for all the pixels in the hidden layer. This
hidden layer can now be used in the rendering routine (see
Section 4.2).

As a final remark, we mention that the secondary im-
age in the 2D-to-3D conversion need not be an image that
was recorded using a stereo camera. Another frame from the
same 2D video sequence can also serve as a reference, even
when there is motion in the video sequence. In that case, we
also need to estimate the camera motion between the frames
of the sequence as a prerequisite to compute the depth chan-
nel.

4.2. Rendering the hidden layer

In this section, we discuss how to use the hidden layer to
improve image quality in rendered views. We recall from
Section 3, how we put the problem of rendering from another
viewpoint in the context of resampling the original image to
the sampling grid imposed by the projection from the desired
viewpoint.

c© The Eurographics Association 2003.



Berretty and Ernst / 3D Video Rendering

In Section 3.2 we presented the implementation of the ren-
dering stage, using a transposed mode FIR pre-filter. An out-
put scanline is generated by traversing the input scanline and
use a sliding window of output samples that receive contri-
butions as we progress along the scanline.

When traversing the base layer, we monitor the distance
between successive midpoints of warped reconstructed in-
put samples. As long as the midpoints indicate minification
we directly feed them to the pre-filter structure. In case of
magnification, we now have three options.

The first case is when we have minor magnification. In
that case, we insert artificial input samples to the pre-filter.
In our implementation, we use linear interpolation (of the
color and depth values) to generate these artificial samples.
We have set the threshold to a magnification factor of 1.5 for
this case.

The second case is when we have major magnification.
From the discussion in Section 2, it follows that the regions
that appear to require major magnification are associated
with deocclusions. Hence, we now try to locate input sam-
ples from the hidden layer that could be inserted to fill in the
deoccluded background data.

We recall that the hidden layer is specified in the coordi-
nate frame of the base layer. In order to be able to efficiently
fill in contributions from the hidden layer, we interleave pro-
cessing of the scanline the base image layer, and the hidden
layer. For both scans, we maintain the extent in the output
scanline. This way, we only perform a single scan over the
base image scanline interleaved with a single scan over the
hidden image scanline.

The third case applies when we cannot find the input sam-
ples in the hidden layer. Then, we apply a higher order recon-
struction filter r, to compute the values of the output pixels.

In Appendix 5, we show example output of our renderer.
Figure 10 shows a video frame after viewpoint transforma-
tion that was generated without the use of a hidden layer.
Figure 11 shows a frame that was generated using a hidden
layer.

We note that while the quality is optimal if the viewpoint
of the rendered image is between those of the original and
matched image, the rendering stage can always either use
input samples from the base layer, or from the hidden layer.
If there is no hidden layer information available, then we
need to fall back to the reconstruction filter for the magnified
areas in the final image.

5. Results

In this section, we show example output from our render-
ing routines. Figures 8 and 9 show video frames after view-
point transformation without and with higer order filtering
respectively. Figure 10 shows a video frame after viewpoint

transformation that was generated without the use of a hid-
den layer. Figure 11 shows a frame that was generated using
a hidden layer. The ghost edge artefact is due to an error in
the depth information in the input stream.

Figure 8: Image generated without higher order filtering.
The viewpoint is left to the viewpoint of the original camera.
Aliasing is visible at the boundary of the man’s back

Figure 9: Image generated with four-tap horizontal filtering.
The viewpoint is left to the viewpoint of the original camera.
No aliasing at the boundary of the man’s back

6. Conclusions

In this document, we have described a way to integrate
higher order video filters in the rendering stage of rendering
2.5D video that supports horizontal parallax. This approach
is suitable for, e.g., 3D televisions, or systems that enable
viewers to change the viewpoint. We summarize the most
important properties of the rendering stage.

The renderer can process streaming video, without the use
of a full frame buffer. Each input scanline is traversed only
once. The extent to which a output scanline is rendered in-
creases monotonically, i.e., the renderer never has to reren-
der parts of the output scanline. This extent is maintained
in a single variable during the processing of the scanline.
During the traversal of a scanline, the renderer computes the

c© The Eurographics Association 2003.



Berretty and Ernst / 3D Video Rendering

Figure 10: Image generated using linear interpolating re-
construction filter. The viewpoint is right to the viewpoint of
the original camera.

Figure 11: Image generated using hidden layer rendering.
The viewpoint is right to the viewpoint of the original cam-
era.

magnification factor per input-image pixel. Pixels that ap-
pear occluded can be dropped on the fly, the other pixels can
be fed immediately to a FIR video filter block that pre-filters
and samples the output scanline at screen resolution.

In the rendering process, we can also incorporate the input
of hidden layers that contain information at potential deoc-
clusions. The renderer can handle these hidden layers and
retain the above properties of the renderer for a single layer.

References

1. D. Anderson. Hidden line elimination in projected grid
surfaces. ACM Transactions on Graphics, pages 274–
288, 1982. 3

2. N.L. Chang and A. Zakhor. Constructing a multivalued
representation for view synthesis. International Jour-
nal of Computer Vision, 45:157–190, 2001. 5

3. G. de Haan and P. Biezen. Sub-pixel motion estima-
tion with 3D recursive search block matching. Signal
Processing: Image Comm., 6:229–239, 1994. 6

4. F. Ernst, P. Wilinski, , and K. van Overveld. Dense
structure-from-motion: an approach based on segment
matching. In Proc. ECCV, LNCS 2531, pages 217–231.
Springer, 2002. 1, 6, 6

5. J. Gomes and L. Velho. Image Processing for Computer
Graphics, pages 208–209. Springer, 1997. 4

6. P.S. Heckbert. Fundamentals of Texture Mapping and
Image Warping. PhD thesis, Department of EECS, U.C.
Berkeley, 1989. 2, 3

7. G.J. Iddan and G. Yahav. 3D imaging in the studio (and
elsewhere...). SPIE SMPTE Journal, 42983D, 1994. 1

8. J.G.W.M Janssen, J.H. Stessen, and P.H.N. de With. An
advanced sampling rate conversion technique for video
and graphics signals. In Sixth International Conference
on Image Processing and its Applications, volume 2,
pages 771–775, 1997. 4

9. L. McMillan. An Image-Based Approach to Three Di-
mensional Computer Graphics. PhD thesis, UNC Com-
puter Science, TR97-013, 1997. 3

10. K. Meinds and B. Barenbrug. Resample hardware for
3D graphics. In Proceedings of Graphics Hardware
2002, 2002. 1, 3, 4

11. M. M. Oliveira, G. Bischop, and D. McAllister. Re-
lief texture mapping. In Proceedings of ACM Siggraph,
pages 359–368, 2000. 1

12. M. Pollefeys, R. Koch, M. Vergauwen, B. Deknuydt,
and L. Van Gool. Three-dimensional scene reconstruc-
tion from images. In Proceedings SPIE Electronic
Imaging, Three-Dimensional Image Capture and Ap-
plications III, SPIE Proceedings series, volume 3958,
pages 215–226, 2000. 1

13. V. Popescu, J. Eyles, A. Lastra, J. Steinhurst, N. Eng-
land, and L. Nyland. The warpengine: An architecture
for the post-polygonal age. In Proceedings of ACM Sig-
graph, pages 433–442, 2000. 1

14. A. Redert, M. Op de Beeck, C. Fehn, W. IJsselsteijn,
M. Pollefeys, L. van Gool, E. Ofek, I. Sexton, and
P. Surman. ATTEST: Advanced three-dimensional tele-
vision system technologies. In Proc. 1st Int’l Sympo-
sium 3D data processing, visualization and transmis-
sion, 2002. 1

15. P.A. Redert. Multi-viewpoint systems for 3-D visual
communication. PhD thesis, Delft University of Tech-
nology, 2000. 1

16. G. Wolberg and T.E. Boult. Separable image warping
with spatial lookup tables. Computer Graphics, pages
369–377, 1989. 5

17. M. Zwicker, H. Pfister, J. van Baar, and m. Gross. Sur-
face splatting. In Proceedings of ACM Siggraph, pages
371–378, 2001. 1, 3

c© The Eurographics Association 2003.


